Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
156043212779362592766311 ~2012
156050133233121002664711 ~2011
156052458619363147516711 ~2012
156055577033121111540711 ~2011
156056288033121125760711 ~2011
1560613939174909469076912 ~2014
156072785033121455700711 ~2011
156083204393121664087911 ~2011
156089602019365376120711 ~2012
156095773913121915478311 ~2011
156104621939366277315911 ~2012
156105441233122108824711 ~2011
156106908833122138176711 ~2011
156112214033122244280711 ~2011
156114050033122281000711 ~2011
1561165978315611659783112 ~2012
1561182259112489458072912 ~2012
1561225624112489804992912 ~2012
156135523193122710463911 ~2011
156141734993122834699911 ~2011
156142626233122852524711 ~2011
156144608819368676528711 ~2012
156160631393123212627911 ~2011
156165203033123304060711 ~2011
156171995539370319731911 ~2012
Exponent Prime Factor Dig. Year
156176330993123526619911 ~2011
156179398739370763923911 ~2012
156181393913123627878311 ~2011
156189690713123793814311 ~2011
156190739033123814780711 ~2011
156192064193123841283911 ~2011
156195090233123901804711 ~2011
156196139633123922792711 ~2011
156205340033124106800711 ~2011
1562054353937489304493712 ~2013
156211748513124234970311 ~2011
1562176570159362709663912 ~2014
156219949193124398983911 ~2011
156220128833124402576711 ~2011
156240833393124816667911 ~2011
156242481139374548867911 ~2012
156278747993125574959911 ~2011
156283885139377033107911 ~2012
1562886830912503094647312 ~2012
156292639219377558352711 ~2012
156293084513125861690311 ~2011
156293515193125870303911 ~2011
156300476339378028579911 ~2012
156305753993126115079911 ~2011
156310961579378657694311 ~2012
Exponent Prime Factor Dig. Year
1563334010921886676152712 ~2013
1563423856315634238563112 ~2012
156344027393126880547911 ~2011
156357540593127150811911 ~2011
1563626478125018023649712 ~2013
156364417313127288346311 ~2011
156372386513127447730311 ~2011
156379158833127583176711 ~2011
1563822697712510581581712 ~2012
156390831233127816624711 ~2011
1563953616146918608483112 ~2014
156400630579384037834311 ~2012
156401159179384069550311 ~2012
156403584233128071684711 ~2011
1564064302325025028836912 ~2013
156410347913128206958311 ~2011
1564179848912513438791312 ~2012
156423122993128462459911 ~2011
156425614193128512283911 ~2011
156427368713128547374311 ~2011
156433964033128679280711 ~2011
156455631619387337896711 ~2012
156456151433129123028711 ~2011
156458267419387496044711 ~2012
156475900193129518003911 ~2011
Exponent Prime Factor Dig. Year
156478077713129561554311 ~2011
1565032297712520258381712 ~2012
156504667739390280063911 ~2012
156510342113130206842311 ~2011
156513997339390839839911 ~2012
156514956593130299131911 ~2011
156520370393130407407911 ~2011
156526401833130528036711 ~2011
156532327793130646555911 ~2011
1565355489737568531752912 ~2013
156540955914132...36024114 2023
156543949193130878983911 ~2011
156551815793131036315911 ~2011
156552009713131040194311 ~2011
156555226433131104528711 ~2011
156555779633131115592711 ~2011
156561766313131235326311 ~2011
156562852793131257055911 ~2011
156565077593131301551911 ~2011
156569166593131383331911 ~2011
1565712577937577101869712 ~2013
1565714409115657144091112 ~2012
156571835939394310155911 ~2012
156574152113131483042311 ~2011
1565788806715657888067112 ~2012
Home
4.828.532 digits
e-mail
25-06-01