Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
156582824993131656499911 ~2011
156586434379395186062311 ~2012
1565872509725053960155312 ~2013
156587432513131748650311 ~2011
156595653713131913074311 ~2011
156596362313131927246311 ~2011
156600889193132017783911 ~2011
156602370113132047402311 ~2011
156603431993132068639911 ~2011
156607916339396474979911 ~2012
156608197313132163946311 ~2011
156611561393132231227911 ~2011
156614134793132282695911 ~2011
156617212793132344255911 ~2011
156618909833132378196711 ~2011
156621362339397281739911 ~2012
156626117993132522359911 ~2011
156630617033132612340711 ~2011
156642158513132843170311 ~2011
156643183019398590980711 ~2012
156647591393132951827911 ~2011
156651726233133034524711 ~2011
156655159913133103198311 ~2011
156659298593133185971911 ~2011
1566651217712533209741712 ~2012
Exponent Prime Factor Dig. Year
156666275513133325510311 ~2011
156668996393133379927911 ~2011
156676056833133521136711 ~2011
156679667993133593359911 ~2011
1566900204715669002047112 ~2012
156698729033133974580711 ~2011
156699668419401980104711 ~2012
156701033579402062014311 ~2012
156717874313134357486311 ~2011
1567224031721941136443912 ~2013
156723667913134473358311 ~2011
156737503313134750066311 ~2011
156737603819404256228711 ~2012
156739746233134794924711 ~2011
156742928633134858572711 ~2011
1567563956912540511655312 ~2012
156759757433135195148711 ~2011
1567598500112540788000912 ~2012
156761242793135224855911 ~2011
156765059513135301190311 ~2011
156781617113135632342311 ~2011
156786006113135720122311 ~2011
156789841313135796826311 ~2011
156790701713135814034311 ~2011
1567925010125086800161712 ~2013
Exponent Prime Factor Dig. Year
156797406833135948136711 ~2011
156799085513135981710311 ~2011
156799293713135985874311 ~2011
156807830033136156600711 ~2011
156809522993136190459911 ~2011
156814226513136284530311 ~2011
156823737713136474754311 ~2011
156843522233136870444711 ~2011
1568666564912549332519312 ~2012
156867734993137354699911 ~2011
156870946939412256815911 ~2012
156871145633137422912711 ~2011
156880739393137614787911 ~2011
156883315913137666318311 ~2011
156889533419413372004711 ~2012
156893625833137872516711 ~2011
1568997638337655943319312 ~2013
1569060171115690601711112 ~2012
1569095664134520104610312 ~2013
156914759393138295187911 ~2011
156917228819415033728711 ~2012
156922998019415379880711 ~2012
156927462113138549242311 ~2011
156931798193138635963911 ~2011
156942756593138855131911 ~2011
Exponent Prime Factor Dig. Year
1569485967125111775473712 ~2013
156950868113139017362311 ~2011
156951453593139029071911 ~2011
156967482979418048978311 ~2012
156973249913139464998311 ~2011
156973505339418410319911 ~2012
1569839627965933264371912 ~2014
156999548633139990972711 ~2011
156999692033139993840711 ~2011
157002509779420150586311 ~2012
1570026840762801073628112 ~2014
1570091346715700913467112 ~2012
157026579233140531584711 ~2011
1570288359115702883591112 ~2012
157036099219422165952711 ~2012
157045042193140900843911 ~2011
1570482467912563859743312 ~2012
157051923233141038464711 ~2011
1570531828325128509252912 ~2013
157059419393141188387911 ~2011
1570660747325130571956912 ~2013
157090101139425406067911 ~2012
157093930193141878603911 ~2011
157096451779425787106311 ~2012
157098847193141976943911 ~2011
Home
4.828.532 digits
e-mail
25-06-01