Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
171519786593430395731911 ~2011
171525762713430515254311 ~2011
171537202313430744046311 ~2011
171537588593430751771911 ~2011
171541442633430828852711 ~2011
171549636713430992734311 ~2011
171552877913431057558311 ~2011
171555804713431116094311 ~2011
171563289113431265782311 ~2011
171587160833431743216711 ~2011
171593485793431869715911 ~2011
171596010593431920211911 ~2011
171596266193431925323911 ~2011
1716085736941186057685712 ~2014
1716119929113728959432912 ~2012
171614499833432289996711 ~2011
1716168471710297010830312 ~2012
1716176675310297060051912 ~2012
171632637833432652756711 ~2011
1716360580327461769284912 ~2013
171636311393432726227911 ~2011
1716394576110298367456712 ~2012
171651831113433036622311 ~2011
1716693790317166937903112 ~2013
171681103433433622068711 ~2011
Exponent Prime Factor Dig. Year
171694487993433889759911 ~2011
171696234593433924691911 ~2011
171698885033433977700711 ~2011
171721641233434432824711 ~2011
171725562113434511242311 ~2011
171732342833434646856711 ~2011
1717367644151521029323112 ~2014
171741840113434836802311 ~2011
171755504393435110087911 ~2011
171768378233435367564711 ~2011
171769260233435385204711 ~2011
171771799313435435986311 ~2011
171781437713435628754311 ~2011
171783421793435668435911 ~2011
171795519713435910394311 ~2011
171804915113436098302311 ~2011
171805458593436109171911 ~2011
171812466113436249322311 ~2011
1718177977724054491687912 ~2013
1718222560317182225603112 ~2013
1718370803310310224819912 ~2012
171849958793436999175911 ~2011
1718588453913748707631312 ~2012
171861213113437224262311 ~2011
1718639330954996458588912 ~2014
Exponent Prime Factor Dig. Year
171870981113437419622311 ~2011
171871249313437424986311 ~2011
1718749250344687480507912 ~2014
1718808976110312853856712 ~2012
171886019393437720387911 ~2011
1718879679710313278078312 ~2012
171896373233437927464711 ~2011
171918059033438361180711 ~2011
171918979913438379598311 ~2011
171919211993438384239911 ~2011
1719355447310316132683912 ~2012
171937231193438744623911 ~2011
171959297993439185959911 ~2011
171959796233439195924711 ~2011
171960780713439215614311 ~2011
171976125713439522514311 ~2011
1719825199713758601597712 ~2012
171986157713439723154311 ~2011
171997365233439947304711 ~2011
1720012936937840284611912 ~2014
1720041122913760328983312 ~2012
1720059739724080836355912 ~2013
172010445713440208914311 ~2011
1720235977310321415863912 ~2012
172033821233440676424711 ~2011
Exponent Prime Factor Dig. Year
1720364712110322188272712 ~2012
172046770793440935415911 ~2011
1720520341917205203419112 ~2013
172071287513441425750311 ~2011
172072022513441440450311 ~2011
172073976593441479531911 ~2011
172083533393441670667911 ~2011
172086248993441724979911 ~2011
172087109993441742199911 ~2011
172097927033441958540711 ~2011
172103266913442065338311 ~2011
1721042560713768340485712 ~2012
1721045950110326275700712 ~2012
1721089101710326534610312 ~2012
172117607993442352159911 ~2011
172121255033442425100711 ~2011
1721228301710327369810312 ~2012
172134793793442695875911 ~2011
172136287793442725755911 ~2011
172142266913442845338311 ~2011
172149490913442989818311 ~2011
172161835313443236706311 ~2011
172169100713443382014311 ~2011
1721713477310330280863912 ~2012
172182873233443657464711 ~2011
Home
4.828.532 digits
e-mail
25-06-01