Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
159170948393183418967911 ~2011
159171841313183436826311 ~2011
159182798033183655960711 ~2011
159184183313183683666311 ~2011
159187681433183753628711 ~2011
159189539033183790780711 ~2011
159193410233183868204711 ~2011
159197330993183946619911 ~2011
159200580419552034824711 ~2012
159203103139552186187911 ~2012
159207991793184159835911 ~2011
159208899833184177996711 ~2011
159224080313184481606311 ~2011
159237465779554247946311 ~2012
159238293713184765874311 ~2011
1592392203725478275259312 ~2013
159239443433184788868711 ~2011
159241145393184822907911 ~2011
159262125379555727522311 ~2012
159262988033185259760711 ~2011
1592811823112742494584912 ~2012
1592822101712742576813712 ~2012
159282356993185647139911 ~2011
159283527113185670542311 ~2011
159289441313185788826311 ~2011
Exponent Prime Factor Dig. Year
159292318819557539128711 ~2012
1593022108963720884356112 ~2014
159309140033186182800711 ~2011
159310584833186211696711 ~2011
1593116525912744932207312 ~2012
1593120716912744965735312 ~2012
159327162233186543244711 ~2011
1593315766354172736054312 ~2014
159331679633186633592711 ~2011
159345460313186909206311 ~2011
1593492182341430796739912 ~2013
159352010779561120646311 ~2012
159369829313187396586311 ~2011
159374446193187488923911 ~2011
159377794619562667676711 ~2012
159378766313187575326311 ~2011
159381089513187621790311 ~2011
159385027313187700546311 ~2011
159402747713188054954311 ~2011
159405730913188114618311 ~2011
159407453993188149079911 ~2011
159408767513188175350311 ~2011
159416268619564976116711 ~2012
159426155419565569324711 ~2012
159431190113188623802311 ~2011
Exponent Prime Factor Dig. Year
159440050193188801003911 ~2011
159461640113189232802311 ~2011
159484315819569058948711 ~2012
1594850278112758802224912 ~2012
159489930019569395800711 ~2012
159493887833189877756711 ~2011
159496185113189923702311 ~2011
159498607433189972148711 ~2011
159509765513190195310311 ~2011
159513887513190277750311 ~2011
159515233193190304663911 ~2011
159524623433190492468711 ~2011
159528995633190579912711 ~2011
159529178393190583567911 ~2011
159544015313190880306311 ~2011
159545747993190914959911 ~2011
1595505592738292134224912 ~2013
159551141513191022830311 ~2011
159556151633191123032711 ~2011
159564967793191299355911 ~2011
159568095593191361911911 ~2011
159572591771145...08908714 2023
159573588833191471776711 ~2011
159575414033191508280711 ~2011
159578538713191570774311 ~2011
Exponent Prime Factor Dig. Year
159579583913191591678311 ~2011
159580030313191600606311 ~2011
1595818582712766548661712 ~2012
1595868325938300839821712 ~2013
1595899361928726188514312 ~2013
159603551393192071027911 ~2011
159605565713192111314311 ~2011
159629512193192590243911 ~2011
1596468008912771744071312 ~2012
159655613513193112270311 ~2011
159664742993193294859911 ~2011
159666820313193336406311 ~2011
159676620833193532416711 ~2011
1596783653912774269231312 ~2012
1596795134341516673491912 ~2013
159679804619580788276711 ~2012
159680039179580802350311 ~2012
159681532913193630658311 ~2011
159691998713193839974311 ~2011
159709471979582568318311 ~2012
159716231633194324632711 ~2011
159727700633194554012711 ~2011
159730712774676...69905714 2024
159734951513194699030311 ~2011
1597415608712779324869712 ~2012
Home
4.828.532 digits
e-mail
25-06-01