Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
159748406993194968139911 ~2011
159749404819584964288711 ~2012
159755980433195119608711 ~2011
159755998913195119978311 ~2011
159758299793195165995911 ~2011
159770770433195415408711 ~2011
159773156033195463120711 ~2011
159777274433195545488711 ~2011
159781225913195624518311 ~2011
159781989593195639791911 ~2011
159792032633195840652711 ~2011
1598026256338352630151312 ~2013
1598029705722372415879912 ~2013
159811118033196222360711 ~2011
159813295313196265906311 ~2011
159818671793196373435911 ~2011
159821425313196428506311 ~2011
159824211833196484236711 ~2011
159834942233196698844711 ~2011
159845907113196918142311 ~2011
159849884993196997699911 ~2011
159855150113197103002311 ~2011
159862501793197250035911 ~2011
159863071313197261426311 ~2011
159863156513197263130311 ~2011
Exponent Prime Factor Dig. Year
159870106913197402138311 ~2011
159872608793197452175911 ~2011
1598782739351161047657712 ~2014
159878817713197576354311 ~2011
159883823033197676460711 ~2011
1598847852125581565633712 ~2013
159885043193197700863911 ~2011
159886351913197727038311 ~2011
159887105339593226319911 ~2012
159905505713198110114311 ~2011
159912676193198253523911 ~2011
1599174467912793395743312 ~2012
159918547313198370946311 ~2011
159932507539595950451911 ~2012
159953260193199065203911 ~2011
1599536778125592588449712 ~2013
1599620077112796960616912 ~2012
159980680433199613608711 ~2011
1599869171912798953375312 ~2012
159987827033199756540711 ~2011
159992900633199858012711 ~2011
159993355913199867118311 ~2011
1599988195112799905560912 ~2012
1599994985938399879661712 ~2013
160000507793200010155911 ~2011
Exponent Prime Factor Dig. Year
1600039354776801889025712 ~2014
1600066626716000666267112 ~2012
1600102561128801846099912 ~2013
1600209792716002097927112 ~2012
1600210106951206723420912 ~2014
160025978993200519579911 ~2011
160027551233200551024711 ~2011
160028836193200576723911 ~2011
160034110019602046600711 ~2012
1600355605748010668171112 ~2014
160041535193200830703911 ~2011
1600416604316004166043112 ~2012
160041811339602508679911 ~2012
1600544448725608711179312 ~2013
160056935033201138700711 ~2011
160063068593201261371911 ~2011
160086581633201731632711 ~2011
160090831193201816623911 ~2011
160096661633201933232711 ~2011
160098681113201973622311 ~2011
1600998895712807991165712 ~2012
160105876433202117528711 ~2011
160107206513202144130311 ~2011
160108493633202169872711 ~2011
160114344233202286884711 ~2011
Exponent Prime Factor Dig. Year
160121881193202437623911 ~2011
160128979313202579586311 ~2011
160130647379607838842311 ~2012
160136944913202738898311 ~2011
160146525619608791536711 ~2012
160169521793203390435911 ~2011
1601703395912813627167312 ~2012
160173459593203469191911 ~2011
1601744119712813952957712 ~2012
1601800305128832405491912 ~2013
160182202193203644043911 ~2011
1601926810712815414485712 ~2012
160202251619612135096711 ~2012
1602140438338451370519312 ~2013
160216717193204334343911 ~2011
160234875233204697504711 ~2011
160236258113204725162311 ~2011
160247562833204951256711 ~2011
160250445833205008916711 ~2011
160253680433205073608711 ~2011
160264337513205286750311 ~2011
160265954993205319099911 ~2011
160268146913205362938311 ~2011
160271761313205435226311 ~2011
160285234739617114083911 ~2012
Home
4.828.532 digits
e-mail
25-06-01