Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
241174363314823487266311 ~2012
241179476034823589520711 ~2012
241193501034823870020711 ~2012
2411966149314471796895912 ~2013
241198816794823976335911 ~2012
241229518434824590368711 ~2012
241231054314824621086311 ~2012
241232915514824658310311 ~2012
2412507412324125074123112 ~2014
241267063434825341268711 ~2012
241267146594825342931911 ~2012
241275830994825516619911 ~2012
241275970314825519406311 ~2012
2412791503733779081051912 ~2014
241280844714825616894311 ~2012
2412857735919302861887312 ~2014
241298457114825969142311 ~2012
241317468834826349376711 ~2012
241330549314826610986311 ~2012
241338329514826766590311 ~2012
241344441234826888824711 ~2012
2413524955314481149731912 ~2013
241362592194827251843911 ~2012
241378662714827573254311 ~2012
241380363714827607274311 ~2012
Exponent Prime Factor Dig. Year
241418415714828368314311 ~2012
2414336577714486019466312 ~2013
241452616914829052338311 ~2012
241455404394829108087911 ~2012
241461825834829236516711 ~2012
241465589634829311792711 ~2012
241473591114829471822311 ~2012
241497374394829947487911 ~2012
241501119714830022394311 ~2012
2415156851314490941107912 ~2013
241540991994830819839911 ~2012
241563421314831268426311 ~2012
241573630914831472618311 ~2012
2415759116362809737023912 ~2015
241579732434831594648711 ~2012
241587842034831756840711 ~2012
241592695314831853906311 ~2012
2415967871314495807227912 ~2013
241601232834832024656711 ~2012
2416022905314496137431912 ~2013
241611898314832237966311 ~2012
2416306926114497841556712 ~2013
2416316643714497899862312 ~2013
241633454994832669099911 ~2012
241654018314833080366311 ~2012
Exponent Prime Factor Dig. Year
241669373514833387470311 ~2012
241676198034833523960711 ~2012
241686703914833734078311 ~2012
2417088453714502530722312 ~2013
241716206994834324139911 ~2012
241728713634834574272711 ~2012
241728949194834578983911 ~2012
241730550594834611011911 ~2012
241755297234835105944711 ~2012
241759790394835195807911 ~2012
241763284194835265683911 ~2012
241766963394835339267911 ~2012
2417750772114506504632712 ~2013
241776494514835529890311 ~2012
241782651594835653031911 ~2012
241805400114836108002311 ~2012
2418090679714508544078312 ~2013
241822518114836450362311 ~2012
2418267001119346136008912 ~2014
2418293037714509758226312 ~2013
241839910434836798208711 ~2012
241865022114837300442311 ~2012
241879975914837599518311 ~2012
241883991594837679831911 ~2012
241895917194837918343911 ~2012
Exponent Prime Factor Dig. Year
241897980714837959614311 ~2012
2419106807314514640843912 ~2013
241924244634838484892711 ~2012
241932192234838643844711 ~2012
241972483194839449663911 ~2012
241972857714839457154311 ~2012
241985192692105...76403114 2024
241998052194839961043911 ~2012
241998412194839968243911 ~2012
242007388794840147775911 ~2012
242008515834840170316711 ~2012
2420201155314521206931912 ~2013
242021690034840433800711 ~2012
2420380346933885324856712 ~2014
2420388426114522330556712 ~2013
242061954594841239091911 ~2012
2420880211719367041693712 ~2014
242095224114841904482311 ~2012
242122263594842445271911 ~2012
242134267194842685343911 ~2012
242134921194842698423911 ~2012
242137539234842750784711 ~2012
2421376441714528258650312 ~2013
242145509634842910192711 ~2012
242167822794843356455911 ~2012
Home
4.724.182 digits
e-mail
25-04-13