Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2030478594769036272219912 ~2015
203052930234061058604711 ~2012
203053410714061068214311 ~2012
203056812114061136242311 ~2012
203059827714061196554311 ~2012
203073991914061479838311 ~2012
203077078314061541566311 ~2012
203087197314061743946311 ~2012
203092994034061859880711 ~2012
203094389394061887787911 ~2012
203105825994062116519911 ~2012
2031091144748746187472912 ~2014
203117891034062357820711 ~2012
203127463794062549275911 ~2012
203137911114062758222311 ~2012
2031505671120315056711112 ~2013
203152525914063050518311 ~2012
2031687075132506993201712 ~2014
203179913994063598279911 ~2012
2031861682112191170092712 ~2013
203191019034063820380711 ~2012
2031936592116255492736912 ~2013
203206837914064136758311 ~2012
203208142194064162843911 ~2012
203212949514064258990311 ~2012
Exponent Prime Factor Dig. Year
2032170729120321707291112 ~2013
2032174309716257394477712 ~2013
203237381634064747632711 ~2012
203237929914064758598311 ~2012
203243802114064876042311 ~2012
2032438873116259510984912 ~2013
203260111314065202226311 ~2012
2032704613712196227682312 ~2013
203271015234065420304711 ~2012
203277589434065551788711 ~2012
2032910218716263281749712 ~2013
203293074234065861484711 ~2012
2032951348112197708088712 ~2013
2033031229312198187375912 ~2013
2033046556948793117365712 ~2014
203319952194066399043911 ~2012
203319992514066399850311 ~2012
203325485034066509700711 ~2012
203333442114066668842311 ~2012
2033424937920334249379112 ~2013
203353198999146...90570314 2025
203355450114067109002311 ~2012
2033674081920336740819112 ~2013
203380924314067618486311 ~2012
203393377794067867555911 ~2012
Exponent Prime Factor Dig. Year
2033950542720339505427112 ~2013
2034003105712204018634312 ~2013
203405540994068110819911 ~2012
203407008114068140162311 ~2012
2034091519716272732157712 ~2013
2034237044916273896359312 ~2013
203426871714068537434311 ~2012
2034362748720343627487112 ~2013
203437227714068744554311 ~2012
2034605737920346057379112 ~2013
203462570514069251410311 ~2012
2034732913312208397479912 ~2013
203476571394069531427911 ~2012
203479646394069592927911 ~2012
203486604114069732082311 ~2012
203496113514069922270311 ~2012
203498651034069973020711 ~2012
203511203514070224070311 ~2012
203517996834070359936711 ~2012
2035199986112211199916712 ~2013
203544183234070883664711 ~2012
203551720314071034406311 ~2012
203556450594071129011911 ~2012
203583768594071675371911 ~2012
203607503394072150067911 ~2012
Exponent Prime Factor Dig. Year
2036186821332578989140912 ~2014
203626197234072523944711 ~2012
203627718234072554364711 ~2012
2036324939312217949635912 ~2013
203641137234072822744711 ~2012
203651537514073030750311 ~2012
2036552861916292422895312 ~2013
203659957194073199143911 ~2012
203697727434073954548711 ~2012
2037037016916296296135312 ~2013
203706438834074128776711 ~2012
203710449234074208984711 ~2012
203711565492248...83009714 2024
203719450914074389018311 ~2012
2037222192144818888226312 ~2014
203729689194074593783911 ~2012
203734171914074683438311 ~2012
203734366194074687323911 ~2012
203735459994074709199911 ~2012
203741188794074823775911 ~2012
203742406194074848123911 ~2012
2037507618748900182848912 ~2014
203753342994075066859911 ~2012
2037562700348901504807312 ~2014
2037730351712226382110312 ~2013
Home
4.828.532 digits
e-mail
25-06-01