Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
203776514034075530280711 ~2012
203785828914075716578311 ~2012
203793877794075877555911 ~2012
203798780634075975612711 ~2012
203804238594076084771911 ~2012
203817612714076352254311 ~2012
2038467997712230807986312 ~2013
2038568371312231410227912 ~2013
203859075234077181504711 ~2012
2038597179712231583078312 ~2013
2038648618716309188949712 ~2013
2038698771712232192630312 ~2013
203888941314077778826311 ~2012
2039044365120390443651112 ~2013
203911900914078238018311 ~2012
203913882714078277654311 ~2012
203916953994078339079911 ~2012
2039184922716313479381712 ~2013
2039187781712235126690312 ~2013
203922079434078441588711 ~2012
203924453034078489060711 ~2012
203926005171398...95466314 2023
203933487114078669742311 ~2012
203940019314078800386311 ~2012
203970219714079404394311 ~2012
Exponent Prime Factor Dig. Year
2039715045132635440721712 ~2014
203983297794079665955911 ~2012
203991721914079834438311 ~2012
2039925409712239552458312 ~2013
204000380514080007610311 ~2012
204001254234080025084711 ~2012
204002555034080051100711 ~2012
204012418314080248366311 ~2012
2040158658720401586587112 ~2013
204020251314080405026311 ~2012
204028827711326...80115114 2023
2040403955312242423731912 ~2013
2040431649732646906395312 ~2014
204052317834081046356711 ~2012
2040553877312243323263912 ~2013
204067610994081352219911 ~2012
204082483314081649666311 ~2012
204103036194082060723911 ~2012
2041078982916328631863312 ~2013
2041097715748986345176912 ~2014
204114582834082291656711 ~2012
2041164743328576306406312 ~2014
2041168441728576358183912 ~2014
204120534114082410682311 ~2012
2041239035328577346494312 ~2014
Exponent Prime Factor Dig. Year
2041299214112247795284712 ~2013
204138135834082762716711 ~2012
204138552714082771054311 ~2012
2041450276332663204420912 ~2014
2041612221732665795547312 ~2014
204172323234083446464711 ~2012
204180511914083610238311 ~2012
204194791914083895838311 ~2012
204199600194083992003911 ~2012
204201676434084033528711 ~2012
2042039065116336312520912 ~2013
2042244219712253465318312 ~2013
204227148594084542971911 ~2012
2042501917712255011506312 ~2013
2042505125312255030751912 ~2013
204261206994085224139911 ~2012
204272855514085457110311 ~2012
204293403114085868062311 ~2012
204308465034086169300711 ~2012
204311071434086221428711 ~2012
204313935593481...62453714 2023
204317620314086352406311 ~2012
2043260117916346080943312 ~2013
2043442000716347536005712 ~2013
204363509394087270187911 ~2012
Exponent Prime Factor Dig. Year
2043771663120437716631112 ~2013
2044177327920441773279112 ~2013
2044190674332707050788912 ~2014
204441161034088823220711 ~2012
2044450059712266700358312 ~2013
204449325234088986504711 ~2012
204452754234089055084711 ~2012
204453134634089062692711 ~2012
204463220034089264400711 ~2012
2044702699712268216198312 ~2013
2044875538949077012933712 ~2014
204490852314089817046311 ~2012
204492477114089849542311 ~2012
2045046554916360372439312 ~2013
204510442194090208843911 ~2012
204511263594090225271911 ~2012
204517062594090341251911 ~2012
204526637994090532759911 ~2012
2045266738320452667383112 ~2013
204529985394090599707911 ~2012
2045317411712271904470312 ~2013
2045367031312272202187912 ~2013
204536907594090738151911 ~2012
2045381935712272291614312 ~2013
2045543185312273259111912 ~2013
Home
4.828.532 digits
e-mail
25-06-01