Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
297736236115954724722311 ~2013
297743425795954868515911 ~2013
297752952115955059042311 ~2013
297786207772828...73815114 2023
2977946782117867680692712 ~2014
297814871635956297432711 ~2013
297839917195956798343911 ~2013
297841727635956834552711 ~2013
297854682595957093651911 ~2013
2978671891717872031350312 ~2014
297877673635957553472711 ~2013
297886619395957732387911 ~2013
297889336315957786726311 ~2013
2978911715923831293727312 ~2014
297903401995958068039911 ~2013
297927473395958549467911 ~2013
297943762915958875258311 ~2013
2979518716771508449200912 ~2015
297952179715959043594311 ~2013
2979530254723836242037712 ~2014
297959723995959194479911 ~2013
2979615691317877694147912 ~2014
2979879173923839033391312 ~2014
298014965635960299312711 ~2013
2980330389717881982338312 ~2014
Exponent Prime Factor Dig. Year
298089004795961780095911 ~2013
298102976635962059532711 ~2013
298104256435962085128711 ~2013
298106917315962138346311 ~2013
2981246416723849971333712 ~2014
298139762995962795259911 ~2013
298150860715963017214311 ~2013
298155868915963117378311 ~2013
2981701907971560845789712 ~2015
2981749495723853995965712 ~2014
298179667097013...69956914 2025
298183488115963669762311 ~2013
2981908903123855271224912 ~2014
298197221995963944439911 ~2013
298201190995964023819911 ~2013
2982222248941751111484712 ~2015
2982468117717894808706312 ~2014
298259701435965194028711 ~2013
298288365715965767314311 ~2013
298305370315966107406311 ~2013
298325004715966500094311 ~2013
2983336277317900017663912 ~2014
298358755195967175103911 ~2013
298365686035967313720711 ~2013
298367958115967359162311 ~2013
Exponent Prime Factor Dig. Year
298399607395967992147911 ~2013
298409382235968187644711 ~2013
298411581595968231631911 ~2013
298421572915968431458311 ~2013
2984648431971631562365712 ~2015
2984656783123877254264912 ~2014
2984874482923878995863312 ~2014
2984956920147759310721712 ~2015
298521958435970439168711 ~2013
298541614435970832288711 ~2013
2985426828117912560968712 ~2014
298551691435971033828711 ~2013
298574883715971497674311 ~2013
2985833894923886671159312 ~2014
298599568315971991366311 ~2013
2986327025317917962151912 ~2014
298636025395972720507911 ~2013
298636440595972728811911 ~2013
298644721915972894438311 ~2013
298671668635973433372711 ~2013
298719922315974398446311 ~2013
298736145835974722916711 ~2013
298738965715974779314311 ~2013
298757372635975147452711 ~2013
298772329435975446588711 ~2013
Exponent Prime Factor Dig. Year
298782042835975640856711 ~2013
298792176115975843522311 ~2013
298802160115976043202311 ~2013
298826411635976528232711 ~2013
298848402115976968042311 ~2013
298857180595977143611911 ~2013
298886909395977738187911 ~2013
298911204115978224082311 ~2013
298920924595978418491911 ~2013
298966410595979328211911 ~2013
298977687595979553751911 ~2013
298982624635979652492711 ~2013
298985510035979710200711 ~2013
298998272635979965452711 ~2013
299003084635980061692711 ~2013
299003783515980075670311 ~2013
299027221315980544426311 ~2013
299030298235980605964711 ~2013
2990392969717942357818312 ~2014
299046009595980920191911 ~2013
299047187995980943759911 ~2013
299085796435981715928711 ~2013
299088097195981761943911 ~2013
2990969728117945818368712 ~2014
299097450115981949002311 ~2013
Home
4.724.182 digits
e-mail
25-04-13