Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2958682228329586822283112 ~2015
295883239915917664798311 ~2013
295902437995918048759911 ~2013
295915865995918317319911 ~2013
295955064115919101282311 ~2013
295963888195919277763911 ~2013
295970951035919419020711 ~2013
295974831835919496636711 ~2013
2959761912729597619127112 ~2015
2959940355129599403551112 ~2015
2959953258117759719548712 ~2014
2960025435717760152614312 ~2014
2960085712723680685701712 ~2014
2960155889317760935335912 ~2014
2960241632923681933063312 ~2014
296038092235920761844711 ~2013
2960407117723683256941712 ~2014
2960463289123683706312912 ~2014
2960607999129606079991112 ~2015
296061785515921235710311 ~2013
296078650195921573003911 ~2013
296102146195922042923911 ~2013
2961190615317767143691912 ~2014
296124018115922480362311 ~2013
2961466327717768797966312 ~2014
Exponent Prime Factor Dig. Year
296163456835923269136711 ~2013
296199165595923983311911 ~2013
296207377915924147558311 ~2013
296209497235924189944711 ~2013
296232083995924641679911 ~2013
2962378657123699029256912 ~2014
296244640915924892818311 ~2013
2962587577929625875779112 ~2015
296287415395925748307911 ~2013
296299383115925987662311 ~2013
2962999234753333986224712 ~2015
296307272995926145459911 ~2013
296321463115926429262311 ~2013
296332818235926656364711 ~2013
296350243195927004863911 ~2013
2963714852923709718823312 ~2014
296376317035927526340711 ~2013
296377043395927540867911 ~2013
2964135889723713087117712 ~2014
2964437587953359876582312 ~2015
2964456181123715649448912 ~2014
296462168635929243372711 ~2013
296482237915929644758311 ~2013
2964952884147439246145712 ~2015
296499161515929983230311 ~2013
Exponent Prime Factor Dig. Year
2965444926117792669556712 ~2014
296553808195931076163911 ~2013
296554063315931081266311 ~2013
296565413995931308279911 ~2013
2965929167923727433343312 ~2014
2965941824941523185548712 ~2015
296600684995932013699911 ~2013
296609059195932181183911 ~2013
296636135035932722700711 ~2013
2966392787317798356723912 ~2014
2966598265317799589591912 ~2014
296662577635933251552711 ~2013
2966847215317801083291912 ~2014
2966898187723735185501712 ~2014
296703629871709...08051314 2023
296712692035934253840711 ~2013
296717161315934343226311 ~2013
296725139995934502799911 ~2013
296728899235934577984711 ~2013
296750335435935006708711 ~2013
296756888035935137760711 ~2013
296758638835935172776711 ~2013
2967677430147482838881712 ~2015
296772997315935459946311 ~2013
2967990343741551864811912 ~2015
Exponent Prime Factor Dig. Year
296803490635936069812711 ~2013
2968282836729682828367112 ~2015
296828756395936575127911 ~2013
296832561715936651234311 ~2013
2968376587123747012696912 ~2014
296845322635936906452711 ~2013
296861790235937235804711 ~2013
296862286195937245723911 ~2013
296873753635937475072711 ~2013
296876987635937539752711 ~2013
296906770315938135406311 ~2013
296907845515938156910311 ~2013
296916289435938325788711 ~2013
2969217220117815303320712 ~2014
296923827115938476542311 ~2013
2969262667317815576003912 ~2014
2969291265129692912651112 ~2015
296942313235938846264711 ~2013
296944927491211...04159314 2023
296974753435939495068711 ~2013
297002075035940041500711 ~2013
2970062689929700626899112 ~2015
297011923435940238468711 ~2013
2970124602117820747612712 ~2014
297015809395940316187911 ~2013
Home
4.828.532 digits
e-mail
25-06-01