Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
344730908036894618160711 ~2013
344740620716894812414311 ~2013
344777325596895546511911 ~2013
344782143836895642876711 ~2013
3447869509320687217055912 ~2014
344793865316895877306311 ~2013
344795022596895900451911 ~2013
344819146796896382935911 ~2013
344820103796896402075911 ~2013
344841634039414...09019114 2025
344874898436897497968711 ~2013
344877769436897555388711 ~2013
344894323316897886466311 ~2013
344903811116898076222311 ~2013
3449135140727593081125712 ~2015
3449222979134492229791112 ~2015
344940902036898818040711 ~2013
3449611192120697667152712 ~2014
3449795989720698775938312 ~2014
344984320436899686408711 ~2013
344986756196899735123911 ~2013
3449906584127599252672912 ~2015
344999403116899988062311 ~2013
345009667196900193343911 ~2013
345017789396900355787911 ~2013
Exponent Prime Factor Dig. Year
3450267196727602137573712 ~2015
3450364051320702184307912 ~2014
345047742116900954842311 ~2013
345067801316901356026311 ~2013
345078639836901572796711 ~2013
345097882796901957655911 ~2013
345099047396901980947911 ~2013
3451030897720706185386312 ~2014
3451396993720708381962312 ~2014
345179168996903583379911 ~2013
345203259236904065184711 ~2013
345228080516904561610311 ~2013
345231161396904623227911 ~2013
345242910236904858204711 ~2013
345245185796904903715911 ~2013
345259407236905188144711 ~2013
3452642308127621138464912 ~2015
345287253836905745076711 ~2013
345326168036906523360711 ~2013
345326669396906533387911 ~2013
345326906036906538120711 ~2013
3453352944120720117664712 ~2014
345342578396906851567911 ~2013
345343117196906862343911 ~2013
3454093797162173688347912 ~2016
Exponent Prime Factor Dig. Year
345413558396908271167911 ~2013
345435523436908710468711 ~2013
345439626116908792522311 ~2013
345448801316908976026311 ~2013
345477049316909540986311 ~2013
345489599996909791999911 ~2013
345495724196909914483911 ~2013
345523721396910474427911 ~2013
345608115836912162316711 ~2013
345613434716912268694311 ~2013
3456237004127649896032912 ~2015
345624005036912480100711 ~2013
3456269764355300316228912 ~2016
345640552436912811048711 ~2013
345644323196912886463911 ~2013
345644670836912893416711 ~2013
345660361436913207228711 ~2013
345661208396913224167911 ~2013
345671478836913429576711 ~2013
345672258116913445162311 ~2013
345673017716913460354311 ~2013
345674273996913485479911 ~2013
345696659516913933190311 ~2013
3456985505320741913031912 ~2014
3457169137320743014823912 ~2014
Exponent Prime Factor Dig. Year
3457686053320746116319912 ~2014
345771701396915434027911 ~2013
345773257196915465143911 ~2013
3457930465934579304659112 ~2015
345794777636915895552711 ~2013
345796325516915926510311 ~2013
345798706796915974135911 ~2013
345823295636916465912711 ~2013
345844490932905...23812114 2024
345849008516916980170311 ~2013
345856045196917120903911 ~2013
345865306916917306138311 ~2013
345869811116917396222311 ~2013
345874824836917496496711 ~2013
345882295796917645915911 ~2013
3458917495127671339960912 ~2015
3459244374734592443747112 ~2015
345960014636919200292711 ~2013
345971399036919427980711 ~2013
345971812316919436246311 ~2013
345998561636919971232711 ~2013
346011290396920225807911 ~2013
346024647236920492944711 ~2013
3460248324120761489944712 ~2014
346030075316920601506311 ~2013
Home
4.828.532 digits
e-mail
25-06-01