Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5025914813910051829627912 ~2015
5026468843110052937686312 ~2015
5026877510310053755020712 ~2015
5026902493110053804986312 ~2015
5026996919910053993839912 ~2015
5027116345110054232690312 ~2015
5027541646140220333168912 ~2016
5027545258140220362064912 ~2016
5027990381910055980763912 ~2015
5028082610310056165220712 ~2015
5028466700310056933400712 ~2015
5028702601110057405202312 ~2015
5028731762310057463524712 ~2015
5029157939910058315879912 ~2015
5029308917910058617835912 ~2015
5029396807110058793614312 ~2015
5029477679910058955359912 ~2015
5029833692310059667384712 ~2015
5029975592310059951184712 ~2015
5030218553910060437107912 ~2015
5030721275910061442551912 ~2015
5031546040130189276240712 ~2016
5032041125910064082251912 ~2015
5032358276310064716552712 ~2015
5033131931910066263863912 ~2015
Exponent Prime Factor Dig. Year
5033574807730201448846312 ~2016
5033762774970472678848712 ~2017
5034023897910068047795912 ~2015
5034140803110068281606312 ~2015
5034212743110068425486312 ~2015
5034474613110068949226312 ~2015
5034500497330207002983912 ~2016
5034576029910069152059912 ~2015
5035793603910071587207912 ~2015
5035816901910071633803912 ~2015
5035885547330215313283912 ~2016
5035958843910071917687912 ~2015
5036027991150360279911112 ~2016
5036204021940289632175312 ~2016
5036763335330220580011912 ~2016
503678773878310...68855114 2024
5036792444310073584888712 ~2015
5036914625910073829251912 ~2015
5037162961330222977767912 ~2016
5037167303910074334607912 ~2015
5037173443110074346886312 ~2015
5037239456310074478912712 ~2015
5037363584310074727168712 ~2015
5037376334310074752668712 ~2015
5037542867910075085735912 ~2015
Exponent Prime Factor Dig. Year
5037623888310075247776712 ~2015
5037870523110075741046312 ~2015
5038132336740305058693712 ~2016
5038363595910076727191912 ~2015
5038411331910076822663912 ~2015
5038803545910077607091912 ~2015
5039215549110078431098312 ~2015
5039268854310078537708712 ~2015
5039455898310078911796712 ~2015
5039561569110079123138312 ~2015
5040620030310081240060712 ~2015
5041998083910083996167912 ~2015
5042204993910084409987912 ~2015
5042476430310084952860712 ~2015
5042608433910085216867912 ~2015
5042670638310085341276712 ~2015
5042942371110085884742312 ~2015
5043067903110086135806312 ~2015
5043068293110086136586312 ~2015
5043201962310086403924712 ~2015
5043365873910086731747912 ~2015
5043497353110086994706312 ~2015
5043568406310087136812712 ~2015
5044112542140352900336912 ~2016
5044335780750443357807112 ~2016
Exponent Prime Factor Dig. Year
5044388287110088776574312 ~2015
5044684403910089368807912 ~2015
5045084228310090168456712 ~2015
5045623613910091247227912 ~2015
5045829581910091659163912 ~2015
5046178225110092356450312 ~2015
5046490661910092981323912 ~2015
5046516502130279099012712 ~2016
5046613271910093226543912 ~2015
5046931040310093862080712 ~2015
5047174201110094348402312 ~2015
5047835957910095671915912 ~2015
5048040969150480409691112 ~2016
5048351179110096702358312 ~2015
5049356666310098713332712 ~2015
5049585278310099170556712 ~2015
5049639575910099279151912 ~2015
5049727055910099454111912 ~2015
5049777122310099554244712 ~2015
5049944228940399553831312 ~2016
5050082119110100164238312 ~2015
5050616419730303698518312 ~2016
5051146787910102293575912 ~2015
5051334269910102668539912 ~2015
5051517504130309105024712 ~2016
Home
4.724.182 digits
e-mail
25-04-13