Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5175763741110351527482312 ~2015
517581556216324...16886314 2023
5176052155110352104310312 ~2015
517619289431739...12484914 2023
5176305631110352611262312 ~2015
5176313642310352627284712 ~2015
5176380247741411041981712 ~2016
5176531975772471447659912 ~2017
5176763180310353526360712 ~2015
5176897201110353794402312 ~2015
5177016475731062098854312 ~2016
5177181662310354363324712 ~2015
5177275724310354551448712 ~2015
517757760374432...28767314 2023
5177714017110355428034312 ~2015
5177797603731066785622312 ~2016
5178110045331068660271912 ~2016
5179149773910358299547912 ~2015
5179168940310358337880712 ~2015
5179887024131079322144712 ~2016
5180140505910360281011912 ~2015
5180467154310360934308712 ~2015
5180962987110361925974312 ~2015
5180975329110361950658312 ~2015
5181338900310362677800712 ~2015
Exponent Prime Factor Dig. Year
5182038389910364076779912 ~2015
5182245601110364491202312 ~2015
5182623897731095743386312 ~2016
5182823081910365646163912 ~2015
5182845619110365691238312 ~2015
5183000747941464005983312 ~2016
5183025947910366051895912 ~2015
5183249081910366498163912 ~2015
5183408990310366817980712 ~2015
5183428855731100573134312 ~2016
5183447539741467580317712 ~2016
5183677742310367355484712 ~2015
5184459611910368919223912 ~2015
5184469439910368938879912 ~2015
5184580577910369161155912 ~2015
5184713743110369427486312 ~2015
5185610047951856100479112 ~2016
5185989835110371979670312 ~2015
5187149057910374298115912 ~2015
5187372329910374744659912 ~2015
5187666627731125999766312 ~2016
5187677291910375354583912 ~2015
5187747997110375495994312 ~2015
5187786869910375573739912 ~2015
5187846611910375693223912 ~2015
Exponent Prime Factor Dig. Year
5188481408310376962816712 ~2015
5188678845151886788451112 ~2016
5189400562131136403372712 ~2016
5190084572310380169144712 ~2015
5190278297910380556595912 ~2015
5190350417372664905842312 ~2017
5190354821910380709643912 ~2015
5190869294310381738588712 ~2015
5191090627331146543763912 ~2016
5191140440310382280880712 ~2015
5191825028310383650056712 ~2015
5192032885110384065770312 ~2015
5192540882310385081764712 ~2015
5192664193731155985162312 ~2016
5193031271910386062543912 ~2015
5193070237110386140474312 ~2015
5193394277910386788555912 ~2015
5193513101331161078607912 ~2016
5193681152310387362304712 ~2015
5193922433910387844867912 ~2015
5194089103110388178206312 ~2015
5194370070131166220420712 ~2016
5194651154941557209239312 ~2016
5194742069910389484139912 ~2015
5195034011910390068023912 ~2015
Exponent Prime Factor Dig. Year
5195379475110390758950312 ~2015
5195382881910390765763912 ~2015
5195723912310391447824712 ~2015
5196806850131180841100712 ~2016
5197216040310394432080712 ~2015
5197241912310394483824712 ~2015
5197488373331184930239912 ~2016
5197839638310395679276712 ~2015
5198135293331188811759912 ~2016
5198470481910396940963912 ~2015
5198557531110397115062312 ~2015
5198585792310397171584712 ~2015
5198712991731192277950312 ~2016
5198833590131193001540712 ~2016
5199233341110398466682312 ~2015
5199394255110398788510312 ~2015
519958753011653...34571914 2023
5199782713110399565426312 ~2015
5200031171910400062343912 ~2015
5200148437731200890626312 ~2016
5200196233331201177399912 ~2016
5200368877110400737754312 ~2015
5200499590741603996725712 ~2016
5200600702131203604212712 ~2016
5200655537910401311075912 ~2015
Home
4.724.182 digits
e-mail
25-04-13