Home Free Reseller Hosting Program, Liquid Plan Builder, Multi-Currency Payments e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
307296588716145931774311 ~2013
307306850036146137000711 ~2013
307315330436146306608711 ~2013
3073181431318439088587912 ~2014
3073574981343030049738312 ~2015
3073641511724589132093712 ~2014
307382508716147650174311 ~2013
307393569116147871382311 ~2013
3073954430924591635447312 ~2014
307427307236148546144711 ~2013
3074289461343040052458312 ~2015
307440598316148811966311 ~2013
3074499118330744991183112 ~2015
3074599245718447595474312 ~2014
307478583716149571674311 ~2013
307480220036149604400711 ~2013
307488772316149775446311 ~2013
307490069996149801399911 ~2013
307513903316150278066311 ~2013
307514609516150292190311 ~2013
307525728716150514574311 ~2013
307542967196150859343911 ~2013
307550560436151011208711 ~2013
3075507741149208123857712 ~2015
307560176516151203530311 ~2013
Exponent Prime Factor Dig. Year
307571350916151427018311 ~2013
307571727236151434544711 ~2013
307572813716151456274311 ~2013
3076054859318456329155912 ~2014
307612650716152253014311 ~2013
3076141895343065986534312 ~2015
307631881916152637638311 ~2013
307636046396152720927911 ~2013
307636845716152736914311 ~2013
307637346236152746924711 ~2013
307667802836153356056711 ~2013
307679307236153586144711 ~2013
307682401316153648026311 ~2013
307689704396153794087911 ~2013
307709072036154181440711 ~2013
3077381527124619052216912 ~2014
307778863436155577268711 ~2013
307783772996155675459911 ~2013
3077864131718467184790312 ~2014
3078144121180031747148712 ~2016
307814996636156299932711 ~2013
3078264971318469589827912 ~2014
3078301561724626412493712 ~2014
3078322966780036397134312 ~2016
3078426307318470557843912 ~2014
Exponent Prime Factor Dig. Year
3078468972118470813832712 ~2014
3078940837124631526696912 ~2014
307894901636157898032711 ~2013
3078999871718473999230312 ~2014
307902273236158045464711 ~2013
307936678436158733568711 ~2013
307947702716158954054311 ~2013
307981501436159630028711 ~2013
3079943248349279091972912 ~2015
307995315836159906316711 ~2013
3080119527718480717166312 ~2014
3080143459718480860758312 ~2014
308025084596160501691911 ~2013
308027773196160555463911 ~2013
3080516932330805169323112 ~2015
308071699316161433986311 ~2013
3080884012349294144196912 ~2015
308096328116161926562311 ~2013
308104186436162083728711 ~2013
308133414116162668282311 ~2013
308153364836163067296711 ~2013
308163546293075...91974314 2024
3081640333349306245332912 ~2015
3081713128373961115079312 ~2016
3081735100330817351003112 ~2015
Exponent Prime Factor Dig. Year
308180264516163605290311 ~2013
308190799093766...64879914 2023
308200788716164015774311 ~2013
308201575796164031515911 ~2013
3082046985130820469851112 ~2015
308207396996164147939911 ~2013
3082138602730821386027112 ~2015
308214246596164284931911 ~2013
308219069636164381392711 ~2013
308226121436164522428711 ~2013
308226773516164535470311 ~2013
3082306922924658455383312 ~2014
3082555899718495335398312 ~2014
308281593116165631862311 ~2013
308287898636165757972711 ~2013
308292665516165853310311 ~2013
3083097589318498585535912 ~2014
3083117219318498703315912 ~2014
3083193300118499159800712 ~2014
308320145396166402907911 ~2013
308321866316166437326311 ~2013
308363185316167263706311 ~2013
308367988196167359763911 ~2013
308372985596167459711911 ~2013
308373501716167470034311 ~2013
Home
4.873.271 digits
e-mail
25-06-22