Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5617574129911235148259912 ~2015
561780775914190...88288714 2024
5617875713911235751427912 ~2015
5618203874311236407748712 ~2015
5618928794311237857588712 ~2015
5619002909911238005819912 ~2015
5619281017111238562034312 ~2015
5619294488311238588976712 ~2015
5619429127733716574766312 ~2016
5619459116311238918232712 ~2015
5619618439111239236878312 ~2015
5620813651111241627302312 ~2015
5621064746311242129492712 ~2015
5621112079333726672475912 ~2016
5621314549111242629098312 ~2015
5621532097111243064194312 ~2015
5621780348311243560696712 ~2015
5622017525944976140207312 ~2016
5623159316311246318632712 ~2015
5623236352133739418112712 ~2016
5623237739378725328350312 ~2017
5623720309744989762477712 ~2016
5624740859911249481719912 ~2015
5625688789333754132735912 ~2016
5625998557111251997114312 ~2015
Exponent Prime Factor Dig. Year
5626068991111252137982312 ~2015
5626097565733756585394312 ~2016
5626275590311252551180712 ~2015
5626381652311252763304712 ~2015
5626433203111252866406312 ~2015
5626533734311253067468712 ~2015
5626823842133760943052712 ~2016
5627376926311254753852712 ~2015
5627439355111254878710312 ~2015
5627470062756274700627112 ~2017
5627490943733764945662312 ~2016
5627609522311255219044712 ~2015
5627710358311255420716712 ~2015
5628259232311256518464712 ~2015
5628380255911256760511912 ~2015
5628638429911257276859912 ~2015
5628941964756289419647112 ~2017
5629122684133774736104712 ~2016
5629218028145033744224912 ~2016
5629264865333775589191912 ~2016
5629368706133776212236712 ~2016
5630246515956302465159112 ~2017
5630477798311260955596712 ~2015
5630619914311261239828712 ~2015
5630870024311261740048712 ~2015
Exponent Prime Factor Dig. Year
5630876273911261752547912 ~2015
5631023392745048187141712 ~2016
5631112921111262225842312 ~2015
5631384451145051075608912 ~2016
5632805927911265611855912 ~2015
5633001293945064010351312 ~2016
5633207761111266415522312 ~2015
5633709671911267419343912 ~2015
5633854462356338544623112 ~2017
5634069122311268138244712 ~2015
5634517427911269034855912 ~2015
5635148267911270296535912 ~2015
5635183094311270366188712 ~2015
5635496225911270992451912 ~2015
5635629116311271258232712 ~2015
5635795080756357950807112 ~2017
5636123174311272246348712 ~2015
5636445469111272890938312 ~2015
5636648216311273296432712 ~2015
5636725099111273450198312 ~2015
5637054041911274108083912 ~2015
5637204014311274408028712 ~2015
5637389651945099117215312 ~2016
5637425096311274850192712 ~2015
5637658061911275316123912 ~2015
Exponent Prime Factor Dig. Year
5637711950311275423900712 ~2015
5638021301333828127807912 ~2016
5638087550311276175100712 ~2015
5638553767111277107534312 ~2015
5638778605111277557210312 ~2015
5638944489733833666938312 ~2016
5639117839111278235678312 ~2015
5639180531333835083187912 ~2016
5639334233911278668467912 ~2015
5639385644311278771288712 ~2015
5639566525111279133050312 ~2015
5639804395111279608790312 ~2015
5640693703145125549624912 ~2016
5641853423911283706847912 ~2015
5642851849111285703698312 ~2015
5643031886945144255095312 ~2016
5643188773111286377546312 ~2015
5643531787111287063574312 ~2015
5644101656311288203312712 ~2015
564416918091806...37888114 2023
5644988668356449886683112 ~2017
5645127503333870765019912 ~2016
5645420443111290840886312 ~2015
5645622487111291244974312 ~2015
5646271928311292543856712 ~2015
Home
4.724.182 digits
e-mail
25-04-13