Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7043313700370433137003112 ~2017
7043898471742263390830312 ~2017
7044739303114089478606312 ~2016
7045150667914090301335912 ~2016
7045163699914090327399912 ~2016
704527661591651...87669715 2023
7045866838370458668383112 ~2017
7046008871914092017743912 ~2016
7046128711156369029688912 ~2017
7046168269114092336538312 ~2016
7046233321742277399930312 ~2017
7046394539914092789079912 ~2016
7046989680142281938080712 ~2017
7047294305914094588611912 ~2016
7047850505914095701011912 ~2016
7047889512142287337072712 ~2017
7047893577742287361466312 ~2017
7047919313914095838627912 ~2016
7048021903114096043806312 ~2016
7048141535914096283071912 ~2016
7048144694314096289388712 ~2016
7048234112314096468224712 ~2016
7048311371914096622743912 ~2016
7048447881742290687290312 ~2017
7048502040142291012240712 ~2017
Exponent Prime Factor Dig. Year
7048715768314097431536712 ~2016
7048908419914097816839912 ~2016
7049021402314098042804712 ~2016
7049186369914098372739912 ~2016
7049618241170496182411112 ~2017
7049647613914099295227912 ~2016
7049719931914099439863912 ~2016
7049734273114099468546312 ~2016
7051129496314102258992712 ~2016
7052498731114104997462312 ~2016
7052532736142315196416712 ~2017
7053053161114106106322312 ~2016
7053216967114106433934312 ~2016
7053233136770532331367112 ~2017
7054180617742325083706312 ~2017
7054262174956434097399312 ~2017
7054658848756437270789712 ~2017
7054935265114109870530312 ~2016
7055476172314110952344712 ~2016
7055872898314111745796712 ~2016
7056176737114112353474312 ~2016
7056422335114112844670312 ~2016
7056702347914113404695912 ~2016
7056907277914113814555912 ~2016
7056919230770569192307112 ~2017
Exponent Prime Factor Dig. Year
7057361630314114723260712 ~2016
7057448183914114896367912 ~2016
7058309204314116618408712 ~2016
7058379962314116759924712 ~2016
705852946072724...71830314 2024
7058938733914117877467912 ~2016
7059197415742355184494312 ~2017
7059221786314118443572712 ~2016
7059439967914118879935912 ~2016
7059444317342356665903912 ~2017
7059496760314118993520712 ~2016
7059830497156478643976912 ~2017
7059861661114119723322312 ~2016
7060085683114120171366312 ~2016
7060473670142362842020712 ~2017
7060583848756484670789712 ~2017
706074596871581...96988914 2025
7060857007742365142046312 ~2017
7061667377342370004263912 ~2017
7061866556314123733112712 ~2016
7062291293914124582587912 ~2016
7062987707914125975415912 ~2016
7063504973914127009947912 ~2016
7064931965956519455727312 ~2017
7065794864314131589728712 ~2016
Exponent Prime Factor Dig. Year
706604175013886...62555114 2025
7066070045914132140091912 ~2016
7066072825114132145650312 ~2016
7066141217914132282435912 ~2016
7066414400314132828800712 ~2016
7066673554370666735543112 ~2017
7066759058314133518116712 ~2016
7067039597342402237583912 ~2017
7067189731114134379462312 ~2016
7067317687756538541501712 ~2017
7068145130314136290260712 ~2016
7068652885114137305770312 ~2016
7069075627342414453763912 ~2017
7069409282314138818564712 ~2016
7070220163114140440326312 ~2016
7071271675114142543350312 ~2016
7071305329114142610658312 ~2016
7071360397742428162386312 ~2017
7071423451114142846902312 ~2016
7071709109914143418219912 ~2016
7072058257114144116514312 ~2016
7072761770314145523540712 ~2016
7072860019114145720038312 ~2016
7073128673342438772039912 ~2017
7073394197914146788395912 ~2016
Home
4.724.182 digits
e-mail
25-04-13