Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7008276992314016553984712 ~2016
7009317656314018635312712 ~2016
7009620043756076960349712 ~2017
7009680339742058082038312 ~2017
7010341355914020682711912 ~2016
7010405310142062431860712 ~2017
7010891677114021783354312 ~2016
7010900933914021801867912 ~2016
7010950570142065703420712 ~2017
7011624734314023249468712 ~2016
701166464172131...51076914 2023
7011808658314023617316712 ~2016
7012076753914024153507912 ~2016
7012486421914024972843912 ~2016
7012824181114025648362312 ~2016
7012972535914025945071912 ~2016
701385501233380...15928714 2024
7013938781914027877563912 ~2016
701400784332637...49080914 2024
701410174033100...69212714 2023
7014380080142086280480712 ~2017
7015084603342090507619912 ~2017
7015806674314031613348712 ~2016
7015910704142095464224712 ~2017
7016180911114032361822312 ~2016
Exponent Prime Factor Dig. Year
7016497817914032995635912 ~2016
7017017657914034035315912 ~2016
7017325696156138605568912 ~2017
7017353102314034706204712 ~2016
7017788234314035576468712 ~2016
7018318526314036637052712 ~2016
7018465578770184655787112 ~2017
7018730615914037461231912 ~2016
7019740052314039480104712 ~2016
7019859143914039718287912 ~2016
7019992220314039984440712 ~2016
7020525146956164201175312 ~2017
7020647209742123883258312 ~2017
7020721025914041442051912 ~2016
7021121395114042242790312 ~2016
7021654754314043309508712 ~2016
7022210701742133264210312 ~2017
7022662897114045325794312 ~2016
7023124283914046248567912 ~2016
7023221327956185770623312 ~2017
7024460426314048920852712 ~2016
7024492741114048985482312 ~2016
7024769947114049539894312 ~2016
7024855914142149135484712 ~2017
7024872002314049744004712 ~2016
Exponent Prime Factor Dig. Year
702496058572528...10852114 2024
702503345273778...08620715 2025
7025207525914050415051912 ~2016
7025430770956203446167312 ~2017
7025658845914051317691912 ~2016
7026425152756211401221712 ~2017
7026928382314053856764712 ~2016
7027029479914054058959912 ~2016
7027212319114054424638312 ~2016
7027361005114054722010312 ~2016
7027380463114054760926312 ~2016
7027792691914055585383912 ~2016
7028254675156226037400912 ~2017
7029176864314058353728712 ~2016
7029922196314059844392712 ~2016
7030078841914060157683912 ~2016
7030714505914061429011912 ~2016
7030985591914061971183912 ~2016
7031555635742189333814312 ~2017
7032487772314064975544712 ~2016
7033220909914066441819912 ~2016
7033457459914066914919912 ~2016
7033851187114067702374312 ~2016
7033876459756271011677712 ~2017
7034139118756273112949712 ~2017
Exponent Prime Factor Dig. Year
7034314207114068628414312 ~2016
7034499524314068999048712 ~2016
7034974031914069948063912 ~2016
7035870809914071741619912 ~2016
7036223605114072447210312 ~2016
7036525087756292200701712 ~2017
7036804721914073609443912 ~2016
7037143889914074287779912 ~2016
7037156453342222938719912 ~2017
7037577203914075154407912 ~2016
7037959183756303673469712 ~2017
7038105346142228632076712 ~2017
7038115279114076230558312 ~2016
7038307859914076615719912 ~2016
7038459168142230755008712 ~2017
7038548761114077097522312 ~2016
7038585811156308686488912 ~2017
7038883831342233302987912 ~2017
7041064121956328512975312 ~2017
7041579691114083159382312 ~2016
7041858986314083717972712 ~2016
7041921925742251531554312 ~2017
7042487717914084975435912 ~2016
7043145982142258875892712 ~2017
7043147329114086294658312 ~2016
Home
4.724.182 digits
e-mail
25-04-13