Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5019065822310038131644712 ~2015
5019887333910039774667912 ~2015
5019978293910039956587912 ~2015
5020594330130123565980712 ~2016
5020972510740167780085712 ~2016
5021137172940169097383312 ~2016
5021297371110042594742312 ~2015
5021610061110043220122312 ~2015
5021803397910043606795912 ~2015
5022295211910044590423912 ~2015
5022589081110045178162312 ~2015
5023038320970322536492712 ~2017
5023082906310046165812712 ~2015
5023595621910047191243912 ~2015
5023608782310047217564712 ~2015
5023867625910047735251912 ~2015
5024055772350240557723112 ~2016
5024424589770341944255912 ~2017
5024510894310049021788712 ~2015
5024739794310049479588712 ~2015
5024805731330148834387912 ~2016
5025605677110051211354312 ~2015
5025883424310051766848712 ~2015
5025914813910051829627912 ~2015
5026468843110052937686312 ~2015
Exponent Prime Factor Dig. Year
5026877510310053755020712 ~2015
5026902493110053804986312 ~2015
5026996919910053993839912 ~2015
5027116345110054232690312 ~2015
5027541646140220333168912 ~2016
5027545258140220362064912 ~2016
5027990381910055980763912 ~2015
5028082610310056165220712 ~2015
5028466700310056933400712 ~2015
5028702601110057405202312 ~2015
5028731762310057463524712 ~2015
5029157939910058315879912 ~2015
5029308917910058617835912 ~2015
5029396807110058793614312 ~2015
5029477679910058955359912 ~2015
5029833692310059667384712 ~2015
5029975592310059951184712 ~2015
5030218553910060437107912 ~2015
5030721275910061442551912 ~2015
5031050680130186304080712 ~2016
5031546040130189276240712 ~2016
5032041125910064082251912 ~2015
5032358276310064716552712 ~2015
503242547032697...20808115 2025
5033131931910066263863912 ~2015
Exponent Prime Factor Dig. Year
5033574807730201448846312 ~2016
5033762774970472678848712 ~2017
5034023897910068047795912 ~2015
5034140803110068281606312 ~2015
5034212743110068425486312 ~2015
5034474613110068949226312 ~2015
5034500497330207002983912 ~2016
5034576029910069152059912 ~2015
5035793603910071587207912 ~2015
5035816901910071633803912 ~2015
5035885547330215313283912 ~2016
5035958843910071917687912 ~2015
5036027991150360279911112 ~2016
5036204021940289632175312 ~2016
5036597539950365975399112 ~2016
5036763335330220580011912 ~2016
503678773878310...68855114 2024
5036792444310073584888712 ~2015
5036914625910073829251912 ~2015
5037162961330222977767912 ~2016
5037167303910074334607912 ~2015
5037173443110074346886312 ~2015
5037239456310074478912712 ~2015
5037363584310074727168712 ~2015
5037376334310074752668712 ~2015
Exponent Prime Factor Dig. Year
5037542867910075085735912 ~2015
5037623888310075247776712 ~2015
5037870523110075741046312 ~2015
5038132336740305058693712 ~2016
5038363595910076727191912 ~2015
5038411331910076822663912 ~2015
5038803545910077607091912 ~2015
5039215549110078431098312 ~2015
5039268854310078537708712 ~2015
5039455898310078911796712 ~2015
5039561569110079123138312 ~2015
5040620030310081240060712 ~2015
5041998083910083996167912 ~2015
5042204993910084409987912 ~2015
5042476430310084952860712 ~2015
5042608433910085216867912 ~2015
5042670638310085341276712 ~2015
5042942371110085884742312 ~2015
5043067903110086135806312 ~2015
5043068293110086136586312 ~2015
5043201962310086403924712 ~2015
5043365873910086731747912 ~2015
5043497353110086994706312 ~2015
5043568406310087136812712 ~2015
5044112542140352900336912 ~2016
Home
4.828.532 digits
e-mail
25-06-01