Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5044335780750443357807112 ~2016
5044388287110088776574312 ~2015
5044684403910089368807912 ~2015
5045084228310090168456712 ~2015
5045623613910091247227912 ~2015
5045829581910091659163912 ~2015
5046178225110092356450312 ~2015
5046490661910092981323912 ~2015
5046516502130279099012712 ~2016
5046613271910093226543912 ~2015
5046931040310093862080712 ~2015
5047174201110094348402312 ~2015
5047835957910095671915912 ~2015
5048040969150480409691112 ~2016
5048351179110096702358312 ~2015
5049356666310098713332712 ~2015
5049585278310099170556712 ~2015
5049639575910099279151912 ~2015
5049727055910099454111912 ~2015
5049777122310099554244712 ~2015
5049944228940399553831312 ~2016
5050082119110100164238312 ~2015
5050616419730303698518312 ~2016
5051146787910102293575912 ~2015
5051334269910102668539912 ~2015
Exponent Prime Factor Dig. Year
5051517504130309105024712 ~2016
5051838707910103677415912 ~2015
5051897365110103794730312 ~2015
5051968070310103936140712 ~2015
5051997781110103995562312 ~2015
5052370919910104741839912 ~2015
5052558233910105116467912 ~2015
5052719066310105438132712 ~2015
5052742703910105485407912 ~2015
5052844217940422753743312 ~2016
5052873512310105747024712 ~2015
5053290896310106581792712 ~2015
5053374686310106749372712 ~2015
5054669989110109339978312 ~2015
5054873504310109747008712 ~2015
5055304813110110609626312 ~2015
5055798374310111596748712 ~2015
5056152419910112304839912 ~2015
5056733129910113466259912 ~2015
5057019905910114039811912 ~2015
5057389285110114778570312 ~2015
5057407069110114814138312 ~2015
5057453505730344721034312 ~2016
5057668022310115336044712 ~2015
5057959561110115919122312 ~2015
Exponent Prime Factor Dig. Year
5058078251910116156503912 ~2015
5058406255330350437531912 ~2016
5058755174310117510348712 ~2015
5058870854310117741708712 ~2015
5058927587910117855175912 ~2015
5059161667110118323334312 ~2015
5059800970140478407760912 ~2016
5059805630310119611260712 ~2015
5059864825110119729650312 ~2015
5060252448750602524487112 ~2016
5060436493110120872986312 ~2015
5060723944740485791557712 ~2016
5061121466310122242932712 ~2015
5061177029910122354059912 ~2015
5061574430310123148860712 ~2015
5061589687110123179374312 ~2015
5062074421110124148842312 ~2015
506214376631943...06259314 2023
5062320409110124640818312 ~2015
506257050791555...00268915 2023
5062667520130376005120712 ~2016
5062816274310125632548712 ~2015
5062992809910125985619912 ~2015
5063568865140508550920912 ~2016
5064022739910128045479912 ~2015
Exponent Prime Factor Dig. Year
5064058901910128117803912 ~2015
5064077604750640776047112 ~2016
5064556217910129112435912 ~2015
5064655763910129311527912 ~2015
5064791449110129582898312 ~2015
5065040505150650405051112 ~2016
5065078259910130156519912 ~2015
5065109306310130218612712 ~2015
5065266167910130532335912 ~2015
5065541161730393246970312 ~2016
5065640305330393841831912 ~2016
5066040337730396242026312 ~2016
5066085001110132170002312 ~2015
5066196497330397178983912 ~2016
5066280059910132560119912 ~2015
5066456132310132912264712 ~2015
5066871475740534971805712 ~2016
5067490309330404941855912 ~2016
5067555535110135111070312 ~2015
5067730927110135461854312 ~2015
5067734834310135469668712 ~2015
5067745832310135491664712 ~2015
5068411174130410467044712 ~2016
5068640159910137280319912 ~2015
5068983344310137966688712 ~2015
Home
4.828.532 digits
e-mail
25-06-01