Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5097038329110194076658312 ~2015
5097220826310194441652712 ~2015
5097226957110194453914312 ~2015
5097335021330584010127912 ~2016
5097881459910195762919912 ~2015
509794655573456...64764714 2023
5098151318310196302636712 ~2015
5098993891110197987782312 ~2015
5099394965910198789931912 ~2015
5099810339910199620679912 ~2015
5099816948310199633896712 ~2015
5099873477910199746955912 ~2015
5100519545910201039091912 ~2015
5100625753110201251506312 ~2015
5100978205110201956410312 ~2015
5101031567910202063135912 ~2015
5101181300310202362600712 ~2015
5101312952310202625904712 ~2015
5101405613940811244911312 ~2016
5101515779910203031559912 ~2015
5101894010310203788020712 ~2015
5101916065110203832130312 ~2015
5102372402310204744804712 ~2015
5102632334310205264668712 ~2015
5102897404140823179232912 ~2016
Exponent Prime Factor Dig. Year
5102898116310205796232712 ~2015
5103073357110206146714312 ~2015
510317669271469...87497714 2023
5103814196310207628392712 ~2015
5104195196310208390392712 ~2015
5104669585110209339170312 ~2015
5104791365910209582731912 ~2015
5105393831910210787663912 ~2015
5105478065910210956131912 ~2015
5105529368310211058736712 ~2015
5105549918971477698864712 ~2017
5105852333910211704667912 ~2015
5105870407110211740814312 ~2015
5105903473730635420842312 ~2016
5106215043730637290262312 ~2016
5106345787110212691574312 ~2015
5106632912310213265824712 ~2015
5107259317110214518634312 ~2015
5107417876130644507256712 ~2016
5107493017740859944141712 ~2016
5107895936310215791872712 ~2015
5109391562310218783124712 ~2015
5109429298740875434389712 ~2016
5109517757910219035515912 ~2015
5109723512940877788103312 ~2016
Exponent Prime Factor Dig. Year
5109967953730659807722312 ~2016
5110012225771540171159912 ~2017
5110171538310220343076712 ~2015
5110218212310220436424712 ~2015
5110250101110220500202312 ~2015
5110272745110220545490312 ~2015
5110449085110220898170312 ~2015
5110604051910221208103912 ~2015
5111020181910222040363912 ~2015
5111044381730666266290312 ~2016
5111094029910222188059912 ~2015
5111218662751112186627112 ~2016
5111270792310222541584712 ~2015
5111308757910222617515912 ~2015
5111858743110223717486312 ~2015
5111961437910223922875912 ~2015
5112033488310224066976712 ~2015
5112202403910224404807912 ~2015
5112418759110224837518312 ~2015
5112435323910224870647912 ~2015
5113026457110226052914312 ~2015
5113273855110226547710312 ~2015
5113437015151134370151112 ~2016
5113540343910227080687912 ~2015
5114129161110228258322312 ~2015
Exponent Prime Factor Dig. Year
511420091113610...43236714 2024
5114648984310229297968712 ~2015
5115214694310230429388712 ~2015
5115501793140924014344912 ~2016
5115524387910231048775912 ~2015
5115729524310231459048712 ~2015
5115867427110231734854312 ~2015
5116024645110232049290312 ~2015
5116993100310233986200712 ~2015
5117058847110234117694312 ~2015
5117472872310234945744712 ~2015
5117663057910235326115912 ~2015
5117741282310235482564712 ~2015
5118071694130708430164712 ~2016
5118318305910236636611912 ~2015
5118602965110237205930312 ~2015
5118927575910237855151912 ~2015
5119340173330716041039912 ~2016
5119594283910239188567912 ~2015
5119918159110239836318312 ~2015
5120202293910240404587912 ~2015
5120407477140963259816912 ~2016
5120795324310241590648712 ~2015
5121614129910243228259912 ~2015
5122068817110244137634312 ~2015
Home
4.828.532 digits
e-mail
25-06-01