Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8001611695116003223390312 ~2016
8001628864148009773184712 ~2017
8001801277116003602554312 ~2016
8002039513116004079026312 ~2016
8002207471116004414942312 ~2016
8002399439916004798879912 ~2016
8002595251116005190502312 ~2016
8002644251916005288503912 ~2016
8002825093116005650186312 ~2016
8003448380316006896760712 ~2016
8003489033916006978067912 ~2016
8003827231116007654462312 ~2016
8004419821116008839642312 ~2016
800470196992516...93365715 2025
8004757823916009515647912 ~2016
8004981113916009962227912 ~2016
8005052792316010105584712 ~2016
8005553303916011106607912 ~2016
800572528313458...22299314 2023
8006577332316013154664712 ~2016
8006941033116013882066312 ~2016
8007443785116014887570312 ~2016
8007510488316015020976712 ~2016
8007803233748046819402312 ~2017
8008411262316016822524712 ~2016
Exponent Prime Factor Dig. Year
8009830451916019660903912 ~2016
8010001189116020002378312 ~2016
8010687168148064123008712 ~2017
8010876023916021752047912 ~2016
801098806738892...54703114 2025
8011018464148066110784712 ~2017
8011835156316023670312712 ~2016
8012719200148076315200712 ~2017
8013317972316026635944712 ~2016
8013397475916026794951912 ~2016
8013460253916026920507912 ~2016
8013673031916027346063912 ~2016
8014758401916029516803912 ~2016
8015097973116030195946312 ~2016
8015967275916031934551912 ~2016
8015990564316031981128712 ~2016
8016912499116033824998312 ~2016
8017124443116034248886312 ~2016
8017321597116034643194312 ~2016
8018099057916036198115912 ~2016
8018322983916036645967912 ~2016
8018977603116037955206312 ~2016
8019956137116039912274312 ~2016
8020722860316041445720712 ~2016
8020827379116041654758312 ~2016
Exponent Prime Factor Dig. Year
8021060225916042120451912 ~2016
8021169569916042339139912 ~2016
8022221968164177775744912 ~2018
8022417383916044834767912 ~2016
8022491066316044982132712 ~2016
8022504326316045008652712 ~2016
8022782053116045564106312 ~2016
8022880520316045761040712 ~2016
8023000613964184004911312 ~2018
8023098559116046197118312 ~2016
8023478189916046956379912 ~2016
8023688900316047377800712 ~2016
8023733359116047466718312 ~2016
8024327470148145964820712 ~2017
8024969921964199759375312 ~2018
8025077195916050154391912 ~2016
8025122012316050244024712 ~2016
8025404900316050809800712 ~2016
8025745229348154471375912 ~2017
8026983947348161903683912 ~2017
8027532179916055064359912 ~2016
8028006671916056013343912 ~2016
8028529703964228237631312 ~2018
8028978769116057957538312 ~2016
8029962133116059924266312 ~2016
Exponent Prime Factor Dig. Year
8030888149116061776298312 ~2016
8031425330316062850660712 ~2016
8031522452316063044904712 ~2016
803219752314963...69275914 2023
8032427161348194562967912 ~2017
8032456993116064913986312 ~2016
8032826485116065652970312 ~2016
8032830422316065660844712 ~2016
8033475005916066950011912 ~2016
8034396629916068793259912 ~2016
8036280223116072560446312 ~2016
8036364517116072729034312 ~2016
8036616253348219697519912 ~2017
8037038252316074076504712 ~2016
8037191413116074382826312 ~2016
8037281370148223688220712 ~2017
8037387743348224326459912 ~2017
8038556312316077112624712 ~2016
8038940953116077881906312 ~2016
8039357683116078715366312 ~2016
8039692559916079385119912 ~2016
8039763392964318107143312 ~2018
8039781463116079562926312 ~2016
8039804258316079608516712 ~2016
8041153847916082307695912 ~2016
Home
4.724.182 digits
e-mail
25-04-13