Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8993543268153961259608712 ~2018
8993566916317987133832712 ~2017
8994324149917988648299912 ~2017
8994411217117988822434312 ~2017
8994686675917989373351912 ~2017
8995203956317990407912712 ~2017
8995228544317990457088712 ~2017
8995464953917990929907912 ~2017
8995543145917991086291912 ~2017
8997365228317994730456712 ~2017
8997708577117995417154312 ~2017
8998183421917996366843912 ~2017
8998793891917997587783912 ~2017
8999222903917998445807912 ~2017
8999495150317998990300712 ~2017
8999526457117999052914312 ~2017
9000480533918000961067912 ~2017
9001095071354006570427912 ~2018
9001179668318002359336712 ~2017
9001552895918003105791912 ~2017
9001598383118003196766312 ~2017
9001678963118003357926312 ~2017
9001725470318003450940712 ~2017
9001733041354010398247912 ~2018
9002119984772016959877712 ~2018
Exponent Prime Factor Dig. Year
9002294894318004589788712 ~2017
9002713700318005427400712 ~2017
9002884129118005768258312 ~2017
9002911049918005822099912 ~2017
9003178712318006357424712 ~2017
9003636119918007272239912 ~2017
9004048487918008096975912 ~2017
9004153949354024923695912 ~2018
900513265914484...64231914 2023
9006276836318012553672712 ~2017
9006283813754037702882312 ~2018
9006523453754039140722312 ~2018
9006710147918013420295912 ~2017
9007742168318015484336712 ~2017
9008655433118017310866312 ~2017
9009753625354058521751912 ~2018
9010141381754060848290312 ~2018
9010445396318020890792712 ~2017
9010495748318020991496712 ~2017
9011023691354066142147912 ~2018
9011112011918022224023912 ~2017
9011842963118023685926312 ~2017
9012004429118024008858312 ~2017
9012051248318024102496712 ~2017
9012972079754077832478312 ~2018
Exponent Prime Factor Dig. Year
9013291225118026582450312 ~2017
9013899161918027798323912 ~2017
9014784698318029569396712 ~2017
9016718737354100312423912 ~2018
9017363017118034726034312 ~2017
9018551498318037102996712 ~2017
9018753301118037506602312 ~2017
9019881695918039763391912 ~2017
9020161265918040322531912 ~2017
9020894768318041789536712 ~2017
9021340187918042680375912 ~2017
9021803777918043607555912 ~2017
9021845509118043691018312 ~2017
9022669598318045339196712 ~2017
9022684805918045369611912 ~2017
9022903961918045807923912 ~2017
9023658665918047317331912 ~2017
9023751980318047503960712 ~2017
9024426391172195411128912 ~2018
9025025411918050050823912 ~2017
9026124901772208999213712 ~2018
9026339029118052678058312 ~2017
9026638532972213108263312 ~2018
9027254357918054508715912 ~2017
9027478478318054956956712 ~2017
Exponent Prime Factor Dig. Year
9027705169118055410338312 ~2017
9028058516318056117032712 ~2017
9028080877118056161754312 ~2017
9028219433918056438867912 ~2017
9028478918318056957836712 ~2017
9029348174972234785399312 ~2018
9030297907772242383261712 ~2018
9030991789118061983578312 ~2017
9031195597118062391194312 ~2017
9032276177918064552355912 ~2017
9032962292318065924584712 ~2017
9033585104318067170208712 ~2017
9033979675354203878051912 ~2018
9034161967772273295741712 ~2018
9034230266318068460532712 ~2017
9034364972318068729944712 ~2017
9034424461172275395688912 ~2018
9034790689354208744135912 ~2018
9034815134318069630268712 ~2017
9036213026318072426052712 ~2017
9036527552318073055104712 ~2017
9036949445918073898891912 ~2017
9037391416772299131333712 ~2018
9037721078318075442156712 ~2017
9037874192318075748384712 ~2017
Home
4.724.182 digits
e-mail
25-04-13