Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9038458675118076917350312 ~2017
9039211435354235268611912 ~2018
9039819515918079639031912 ~2017
9040054114172320432912912 ~2018
9040617671918081235343912 ~2017
9041504168318083008336712 ~2017
9041692742318083385484712 ~2017
9041904808772335238469712 ~2018
9042115626154252693756712 ~2018
9042716215118085432430312 ~2017
9042909210154257455260712 ~2018
9043126514318086253028712 ~2017
9043404703118086809406312 ~2017
9044084113118088168226312 ~2017
904431081593473...53305714 2023
9044469587918088939175912 ~2017
9045044293118090088586312 ~2017
9045393706154272362236712 ~2018
9045542255918091084511912 ~2017
9046984028318093968056712 ~2017
9048258727118096517454312 ~2017
9048286948772386295589712 ~2018
9049082900318098165800712 ~2017
9049136288318098272576712 ~2017
9049172513918098345027912 ~2017
Exponent Prime Factor Dig. Year
9050069225918100138451912 ~2017
9050188729118100377458312 ~2017
9051024655118102049310312 ~2017
9051846115118103692230312 ~2017
9051856340318103712680712 ~2017
9052095156154312570936712 ~2018
9052257883772418063069712 ~2018
905247305632391...14744715 2025
9053052604154318315624712 ~2018
9053125910318106251820712 ~2017
9053661233918107322467912 ~2017
9053887067918107774135912 ~2017
9054132227918108264455912 ~2017
9054554150318109108300712 ~2017
9054620665118109241330312 ~2017
9054628255754327769534312 ~2018
9055153382318110306764712 ~2017
9055316954318110633908712 ~2017
9055384709918110769419912 ~2017
9055396039754332376238312 ~2018
9056150845118112301690312 ~2017
9056506700318113013400712 ~2017
9056682016154340092096712 ~2018
9056738420318113476840712 ~2017
9057907412318115814824712 ~2017
Exponent Prime Factor Dig. Year
9058590133118117180266312 ~2017
9058737085118117474170312 ~2017
9059140097918118280195912 ~2017
9059524471118119048942312 ~2017
9059803012154358818072712 ~2018
9060046099118120092198312 ~2017
9060126038318120252076712 ~2017
9060666722318121333444712 ~2017
9061084829918122169659912 ~2017
9061290738154367744428712 ~2018
9061880155118123760310312 ~2017
9062047231172496377848912 ~2018
9062179997918124359995912 ~2017
9062325667354373954003912 ~2018
9063930767918127861535912 ~2017
9064226311118128452622312 ~2017
9065367569918130735139912 ~2017
9065745913118131491826312 ~2017
9065873867354395243203912 ~2018
9066411418772531291349712 ~2018
9066991601918133983203912 ~2017
9067623038318135246076712 ~2017
9067744220318135488440712 ~2017
9068276516318136553032712 ~2017
9068503130318137006260712 ~2017
Exponent Prime Factor Dig. Year
9068818065754412908394312 ~2018
9069294362318138588724712 ~2017
9069694675754418168054312 ~2018
9070335212318140670424712 ~2017
9071318677118142637354312 ~2017
9071323225118142646450312 ~2017
9072118273118144236546312 ~2017
9073159982318146319964712 ~2017
9073187233118146374466312 ~2017
9073622494154441734964712 ~2018
9074046739754444280438312 ~2018
9075197269118150394538312 ~2017
9075382451918150764903912 ~2017
9075484847918150969695912 ~2017
9077543504318155087008712 ~2017
9077984021918155968043912 ~2017
9077992862318155985724712 ~2017
9078074587118156149174312 ~2017
9078897194318157794388712 ~2017
9079035533918158071067912 ~2017
9080802242318161604484712 ~2017
9080834600972646676807312 ~2018
908111983912633...53339114 2024
9081326000318162652000712 ~2017
9081829015118163658030312 ~2017
Home
4.724.182 digits
e-mail
25-04-13