Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
4061880734932495045879312 ~2015
4061926433932495411471312 ~2015
406215036238124300724711 ~2014
406247841718124956834311 ~2014
4062897995932503183967312 ~2015
406305132771560...09836914 2023
406327656238126553124711 ~2014
4063385349724380312098312 ~2015
406360999798127219995911 ~2014
4063803193324382819159912 ~2015
406384662598127693251911 ~2014
406385670238127713404711 ~2014
406426741198128534823911 ~2014
406442247118128844942311 ~2014
4064441033324386646199912 ~2015
406446685798128933715911 ~2014
4064831059724388986358312 ~2015
406484869198129697383911 ~2014
406489319518129786390311 ~2014
406505794798130115895911 ~2014
406552340038131046800711 ~2014
4066102099324396612595912 ~2015
406622668318132453366311 ~2014
4066434786124398608716712 ~2015
406665701518133314030311 ~2014
Exponent Prime Factor Dig. Year
4067016460340670164603112 ~2016
4067246689324403480135912 ~2015
406792404718135848094311 ~2014
406802647318136052946311 ~2014
4068199579724409197478312 ~2015
4068394362765094309803312 ~2016
4068560905132548487240912 ~2015
406898551798137971035911 ~2014
406898774638137975492711 ~2014
4069428178732555425429712 ~2015
406951535998139030719911 ~2014
406955209198139104183911 ~2014
406967362318139347246311 ~2014
406985075998139701519911 ~2014
407024847238140496944711 ~2014
407037599518140751990311 ~2014
4070401632124422409792712 ~2015
407043625198140872503911 ~2014
4071140839940711408399112 ~2016
4071149831324426898987912 ~2015
4071287449365140599188912 ~2016
407131926238142638524711 ~2014
407149162198142983243911 ~2014
407153074438143061488711 ~2014
407153501038143070020711 ~2014
Exponent Prime Factor Dig. Year
4071587270932572698167312 ~2015
407162625118143252502311 ~2014
407189038318143780766311 ~2014
4071901727932575213823312 ~2015
4072295495932578363967312 ~2015
4072434607132579476856912 ~2015
407259076198145181523911 ~2014
4072597212765161555403312 ~2016
4072612994932580903959312 ~2015
4072790323324436741939912 ~2015
407320473593918...55935914 2024
4073348035732586784285712 ~2015
407344222438146884448711 ~2014
4073537741324441226447912 ~2015
4073815369365181045908912 ~2016
407390257798147805155911 ~2014
407410434118148208682311 ~2014
4074108025757037512359912 ~2016
4074291901132594335208912 ~2015
4074350653724446103922312 ~2015
4074670690132597365520912 ~2015
4074824892165197198273712 ~2016
407513227011567...10804715 2025
407515423438150308468711 ~2014
407524638838150492776711 ~2014
Exponent Prime Factor Dig. Year
4075414629724452487778312 ~2015
407542028518150840570311 ~2014
4075725935324454355611912 ~2015
407577083998151541679911 ~2014
407607696838152153936711 ~2014
407627971438152559428711 ~2014
407628698398152573967911 ~2014
407699769838153995396711 ~2014
407700504238154010084711 ~2014
407719248598154384971911 ~2014
407720723038154414460711 ~2014
407778912238155578244711 ~2014
407828761572022...57387314 2023
407867929031566...47475314 2023
4078724208124472345248712 ~2015
4078815234765261043755312 ~2016
407918520118158370402311 ~2014
4079193617324475161703912 ~2015
407932938838158658776711 ~2014
407966006518159320130311 ~2014
4080049861724480299170312 ~2015
4080102323357121432526312 ~2016
408050297038161005940711 ~2014
4080607359724483644158312 ~2015
4080674444957129442228712 ~2016
Home
4.933.056 digits
e-mail
25-07-20