Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9082572308318165144616712 ~2017
9082758595118165517190312 ~2017
9082899323918165798647912 ~2017
9082917614318165835228712 ~2017
9083263117772666104941712 ~2018
9084119096318168238192712 ~2017
9084302603354505815619912 ~2018
9084711433118169422866312 ~2017
9084777230318169554460712 ~2017
9085124999918170249999912 ~2017
9085346731118170693462312 ~2017
9086067421118172134842312 ~2017
9086426942972691415543312 ~2018
9086478746318172957492712 ~2017
9086719752154520318512712 ~2018
9087602539118175205078312 ~2017
9088800536318177601072712 ~2017
9089032283972712258271312 ~2018
9089643755918179287511912 ~2017
9089815957772718527661712 ~2018
9089963917754539783506312 ~2018
9090004715918180009431912 ~2017
9090492350318180984700712 ~2017
9090589375118181178750312 ~2017
9091053691118182107382312 ~2017
Exponent Prime Factor Dig. Year
9091285964318182571928712 ~2017
9091297843354547787059912 ~2018
9091727187754550363126312 ~2018
9091763495918183526991912 ~2017
9091992026318183984052712 ~2017
9091995660154551973960712 ~2018
9092136605918184273211912 ~2017
9092165247754552991486312 ~2018
9092228695118184457390312 ~2017
9092382445118184764890312 ~2017
9092422912772739383301712 ~2018
9092502115754555012694312 ~2018
9092760019354556560115912 ~2018
9093102728318186205456712 ~2017
9093737051918187474103912 ~2017
9093999943118187999886312 ~2017
9095707150154574242900712 ~2018
9096092711918192185423912 ~2017
9096142237118192284474312 ~2017
9096422405972771379247312 ~2018
9096652232318193304464712 ~2017
9096843773354581062639912 ~2018
9096861085118193722170312 ~2017
9097718099918195436199912 ~2017
9097875041918195750083912 ~2017
Exponent Prime Factor Dig. Year
9098394377918196788755912 ~2017
9098590543118197181086312 ~2017
9098698889918197397779912 ~2017
9099444854318198889708712 ~2017
9099629780318199259560712 ~2017
9099635281754597811690312 ~2018
9099635503118199271006312 ~2017
9100014170318200028340712 ~2017
9100064329118200128658312 ~2017
9100951397918201902795912 ~2017
9101177381918202354763912 ~2017
9101472299918202944599912 ~2017
9101600552318203201104712 ~2017
9101736932318203473864712 ~2017
9101929056154611574336712 ~2018
9102689408318205378816712 ~2017
9103635986318207271972712 ~2017
9104289607118208579214312 ~2017
9104494999118208989998312 ~2017
910463361415808...45795914 2024
9104723074154628338444712 ~2018
9105228998318210457996712 ~2017
9105910664318211821328712 ~2017
9108103895918216207791912 ~2017
9109037036318218074072712 ~2017
Exponent Prime Factor Dig. Year
9109176848318218353696712 ~2017
9110194519118220389038312 ~2017
9111304265918222608531912 ~2017
9112654949918225309899912 ~2017
9112685858318225371716712 ~2017
9112885747118225771494312 ~2017
9112962391118225924782312 ~2017
9113116237754678697426312 ~2018
9113199353918226398707912 ~2017
9113838053972910704431312 ~2018
9114070862318228141724712 ~2017
9114689090318229378180712 ~2017
9115004879354690029275912 ~2018
9115017515918230035031912 ~2017
9115234463918230468927912 ~2017
9115575668318231151336712 ~2017
9115839932318231679864712 ~2017
911690502132552...05964114 2024
9116930983118233861966312 ~2017
9117188423918234376847912 ~2017
9118360321354710161927912 ~2018
9118658930318237317860712 ~2017
9119079439118238158878312 ~2017
9119248045118238496090312 ~2017
9119390744318238781488712 ~2017
Home
4.724.182 digits
e-mail
25-04-13