Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
922167250094629...95451914 2023
9222322981118444645962312 ~2017
9222611857755335671146312 ~2018
9223420796318446841592712 ~2017
9223936555118447873110312 ~2017
9225342068318450684136712 ~2017
9225423086318450846172712 ~2017
9225883279118451766558312 ~2017
9226250275118452500550312 ~2017
9226569077355359414463912 ~2018
9227336714318454673428712 ~2017
9228417241118456834482312 ~2017
9228772778318457545556712 ~2017
9228984431918457968863912 ~2017
9229647055755377882334312 ~2018
9229808203355378849219912 ~2018
9229880803773839046429712 ~2018
9230348992155382093952712 ~2018
9230772581918461545163912 ~2017
9231248083118462496166312 ~2017
9231498881918462997763912 ~2017
9232322276318464644552712 ~2017
9232461353918464922707912 ~2017
9233382157118466764314312 ~2017
9233826638973870613111312 ~2018
Exponent Prime Factor Dig. Year
9234080563355404483379912 ~2018
9234111760773872894085712 ~2018
9234148796318468297592712 ~2017
9234242684318468485368712 ~2017
9234369991118468739982312 ~2017
9234736925918469473851912 ~2017
9235778411918471556823912 ~2017
9236284964318472569928712 ~2017
9236743405118473486810312 ~2017
9237969024155427814144712 ~2018
9238628435918477256871912 ~2017
9238974967118477949934312 ~2017
9240377546318480755092712 ~2017
9240564519755443387118312 ~2018
9241201471173929611768912 ~2018
9241732735118483465470312 ~2017
9242204833118484409666312 ~2017
9242332289918484664579912 ~2017
9242636383118485272766312 ~2017
9242714108318485428216712 ~2017
9242778701918485557403912 ~2017
9242873803355457242819912 ~2018
9243508193918487016387912 ~2017
9243525518318487051036712 ~2017
9244105202318488210404712 ~2017
Exponent Prime Factor Dig. Year
9244295772155465774632712 ~2018
9244511227118489022454312 ~2017
9245144030318490288060712 ~2017
9245479316318490958632712 ~2017
9245504264318491008528712 ~2017
9245665634318491331268712 ~2017
9247566197918495132395912 ~2017
9248051251118496102502312 ~2017
9248206177355489237063912 ~2018
9248937797355493626783912 ~2018
9249535169918499070339912 ~2017
9249970567355499823403912 ~2018
9250120669118500241338312 ~2017
9250413380974003307047312 ~2018
9250429258174003434064912 ~2018
9252515321918505030643912 ~2017
9253260055118506520110312 ~2017
9254146962155524881772712 ~2018
9254286554318508573108712 ~2017
9254406386318508812772712 ~2017
9254554079918509108159912 ~2017
9254808854318509617708712 ~2017
9255185561918510371123912 ~2017
9255293295755531759774312 ~2018
9255389258318510778516712 ~2017
Exponent Prime Factor Dig. Year
9255560429918511120859912 ~2017
9255752521118511505042312 ~2017
9256022639974048181119312 ~2018
9257387300974059098407312 ~2018
9257505512318515011024712 ~2017
9258269564318516539128712 ~2017
9258475771118516951542312 ~2017
9258506683118517013366312 ~2017
9258888893918517777787912 ~2017
9259703725118519407450312 ~2017
9260929433918521858867912 ~2017
9261020741918522041483912 ~2017
9261304123118522608246312 ~2017
9261882271118523764542312 ~2017
9261886991918523773983912 ~2017
9263482898318526965796712 ~2017
9265051327174120410616912 ~2018
926540726173984...22531114 2025
9265688552318531377104712 ~2017
9265891442318531782884712 ~2017
9267750557974142004463312 ~2018
9267817226318535634452712 ~2017
9268070937755608425626312 ~2018
9268664786318537329572712 ~2017
926869013834448...66384114 2023
Home
4.724.182 digits
e-mail
25-04-13