Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9269130188318538260376712 ~2017
926919961074171...24815114 2024
9269219113118538438226312 ~2017
9269780023174158240184912 ~2018
9270018937118540037874312 ~2017
9270421463918540842927912 ~2017
9270443204318540886408712 ~2017
9272203118318544406236712 ~2017
9272548859918545097719912 ~2017
9272566177118545132354312 ~2017
9272692193918545384387912 ~2017
9273350336318546700672712 ~2017
9273918235118547836470312 ~2017
9274495789118548991578312 ~2017
9274600793355647604759912 ~2018
9275193815918550387631912 ~2017
9275247691174201981528912 ~2018
9275450224174203601792912 ~2018
9276280357174210242856912 ~2018
9276714931355660289587912 ~2018
927715008313888...48355315 2024
9277196125118554392250312 ~2017
9277676929774221415437712 ~2018
9277927931918555855863912 ~2017
9278086992155668521952712 ~2018
Exponent Prime Factor Dig. Year
9278365927118556731854312 ~2017
9278992267118557984534312 ~2017
9279038693918558077387912 ~2017
9279642109355677852655912 ~2018
9280413938318560827876712 ~2017
9280429501355682577007912 ~2018
9280444498155682666988712 ~2018
9280531175918561062351912 ~2017
9280595821355683574927912 ~2018
9280743353918561486707912 ~2017
9280766899118561533798312 ~2017
9280776362318561552724712 ~2017
9281508923918563017847912 ~2017
9282490745918564981491912 ~2017
9283196285918566392571912 ~2017
9283325598155699953588712 ~2018
9286544545118573089090312 ~2017
9287694923918575389847912 ~2017
9287715551974301724415312 ~2018
9288008875118576017750312 ~2017
9288052057118576104114312 ~2017
9288245216318576490432712 ~2017
9288697342774309578741712 ~2018
9288718763918577437527912 ~2017
9290252147918580504295912 ~2017
Exponent Prime Factor Dig. Year
9290857505918581715011912 ~2017
9291564739755749388438312 ~2018
9292201622318584403244712 ~2017
9292946017118585892034312 ~2017
9292947067118585894134312 ~2017
9293584030155761504180712 ~2018
9293721536318587443072712 ~2017
9293807737118587615474312 ~2017
9296370425918592740851912 ~2017
9296445877118592891754312 ~2017
9296720551118593441102312 ~2017
9297349778318594699556712 ~2017
9297574069118595148138312 ~2017
9299538644318599077288712 ~2017
9299777677118599555354312 ~2017
9300149017118600298034312 ~2017
9300655046318601310092712 ~2017
9300686600318601373200712 ~2017
9301073185118602146370312 ~2017
9301163581355806981487912 ~2018
9301948133918603896267912 ~2017
9302123324318604246648712 ~2017
9302402342974419218743312 ~2018
9302626699755815760198312 ~2018
9304415395755826492374312 ~2018
Exponent Prime Factor Dig. Year
9304425103118608850206312 ~2017
9305170463918610340927912 ~2017
9305966067755835796406312 ~2018
9306231589118612463178312 ~2017
9306345836318612691672712 ~2017
9306605137118613210274312 ~2017
9307464623918614929247912 ~2017
9307549280318615098560712 ~2017
930849468591414...92256914 2024
9308715991118617431982312 ~2017
9308875658318617751316712 ~2017
9309845941118619691882312 ~2017
9310077449355860464695912 ~2018
9310889015355865334091912 ~2018
9311292068318622584136712 ~2017
9311444177918622888355912 ~2017
9311767111355870602667912 ~2018
9311824871918623649743912 ~2017
9311845255174494762040912 ~2018
9312549667118625099334312 ~2017
9313075112318626150224712 ~2017
9313406233118626812466312 ~2017
9313433630318626867260712 ~2017
9314612983118629225966312 ~2017
9314754787755888528726312 ~2018
Home
4.724.182 digits
e-mail
25-04-13