Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9314786123918629572247912 ~2017
9315048287918630096575912 ~2017
9315054443918630108887912 ~2017
9315954439174527635512912 ~2018
9316321724318632643448712 ~2017
9316999915118633999830312 ~2017
9317244422318634488844712 ~2017
9318156320318636312640712 ~2017
9318695570318637391140712 ~2017
931929523612590...75635914 2024
9319384789118638769578312 ~2017
9319427333918638854667912 ~2017
9320299166318640598332712 ~2017
9320615345918641230691912 ~2017
9320720003918641440007912 ~2017
9320983352318641966704712 ~2017
9321156944318642313888712 ~2017
9321569615355929417691912 ~2018
9322175522974577404183312 ~2018
9322476847118644953694312 ~2017
9322825751974582606015312 ~2018
9322944563355937667379912 ~2018
9323122373355938734239912 ~2018
9323508188318647016376712 ~2017
9324350438318648700876712 ~2017
Exponent Prime Factor Dig. Year
9324625229918649250459912 ~2017
9324965670155949794020712 ~2018
9326097766155956586596712 ~2018
9326472649118652945298312 ~2017
932724117594029...87988914 2023
9327298541918654597083912 ~2017
9327865813118655731626312 ~2017
9328728860318657457720712 ~2017
9329379871118658759742312 ~2017
9329441437755976648626312 ~2018
9330259807118660519614312 ~2017
9330775217918661550435912 ~2017
933086952194926...07563314 2023
9332781137355996686823912 ~2018
9333221276318666442552712 ~2017
9333572239118667144478312 ~2017
9334295227774674361821712 ~2018
9334671610174677372880912 ~2018
9335062808318670125616712 ~2017
9335267467118670534934312 ~2017
9336340019918672680039912 ~2017
9336438985774691511885712 ~2018
9336871496318673742992712 ~2017
9337016875118674033750312 ~2017
9337372304318674744608712 ~2017
Exponent Prime Factor Dig. Year
9337549705118675099410312 ~2017
9338231684318676463368712 ~2017
9338737616318677475232712 ~2017
9339176150318678352300712 ~2017
9339305123918678610247912 ~2017
9339471919118678943838312 ~2017
9339603176318679206352712 ~2017
9340960433918681920867912 ~2017
9341121931118682243862312 ~2017
9341698672156050192032712 ~2018
9342155567918684311135912 ~2017
9342439766318684879532712 ~2017
9343123976318686247952712 ~2017
9343174111356059044667912 ~2018
9343649198318687298396712 ~2017
9344296748318688593496712 ~2017
9344322240156065933440712 ~2018
9345447470318690894940712 ~2017
9345790117118691580234312 ~2017
9345991155756075946934312 ~2018
9346583048318693166096712 ~2017
9346631429918693262859912 ~2017
9346675901918693351803912 ~2017
9347357000974778856007312 ~2018
9347814958774782519669712 ~2018
Exponent Prime Factor Dig. Year
9347831297974782650383312 ~2018
9348544483118697088966312 ~2017
9349804661918699609323912 ~2017
9349816043918699632087912 ~2017
9349946666318699893332712 ~2017
9350987882318701975764712 ~2017
9351870524318703741048712 ~2017
9351906917918703813835912 ~2017
9351965473118703930946312 ~2017
9352114000174816912000912 ~2018
9352216399118704432798312 ~2017
9352343732318704687464712 ~2017
9352887752974823102023312 ~2018
935289228191827...18832715 2024
9353571476318707142952712 ~2017
9354145627118708291254312 ~2017
9355447863756132687182312 ~2018
9355575409118711150818312 ~2017
9356727367118713454734312 ~2017
9356781788318713563576712 ~2017
9357259193918714518387912 ~2017
9357500158156145000948712 ~2018
9357854972318715709944712 ~2017
9358549399756151296398312 ~2018
9358988519918717977039912 ~2017
Home
4.724.182 digits
e-mail
25-04-13