Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6213288380312426576760712 ~2015
6213376457912426752915912 ~2015
6213568711337281412267912 ~2016
6213758822312427517644712 ~2015
6213938044749711504357712 ~2017
6214133117912428266235912 ~2015
6214300553912428601107912 ~2015
6214496921912428993843912 ~2015
6214816592312429633184712 ~2015
6215139205337290835231912 ~2016
6215758076312431516152712 ~2015
6215788123112431576246312 ~2015
6217436833962174368339112 ~2017
6219729363737318376182312 ~2016
6220165586312440331172712 ~2015
6220531975112441063950312 ~2015
6220563602312441127204712 ~2015
6220631947962206319479112 ~2017
622110309413155...93275315 2024
6221143766312442287532712 ~2015
6221170937912442341875912 ~2015
6221405905112442811810312 ~2015
6221649155912443298311912 ~2015
6222259337912444518675912 ~2015
6222274244312444548488712 ~2015
Exponent Prime Factor Dig. Year
6222672885737336037314312 ~2016
6222765511112445531022312 ~2015
6223041823112446083646312 ~2015
6223172964137339037784712 ~2016
6223324124312446648248712 ~2015
6223603541912447207083912 ~2015
6223825819112447651638312 ~2015
6224552965737347317794312 ~2016
6224656760949797254087312 ~2017
6224787553112449575106312 ~2015
6225076981112450153962312 ~2015
6225163321112450326642312 ~2015
6225325058312450650116712 ~2015
6225473647749803789181712 ~2017
6225620507912451241015912 ~2015
6225941797112451883594312 ~2015
6226250653337357503919912 ~2016
6227207450312454414900712 ~2015
6227419001912454838003912 ~2015
6227466494312454932988712 ~2015
6227499535112454999070312 ~2015
6227519213912455038427912 ~2015
6227577907337365467443912 ~2016
6227937754137367626524712 ~2016
6228196909112456393818312 ~2015
Exponent Prime Factor Dig. Year
6228269551112456539102312 ~2015
6228292123749826336989712 ~2017
6228312511112456625022312 ~2015
6228375301112456750602312 ~2015
6228381167912456762335912 ~2015
6228389777912456779555912 ~2015
6228752315912457504631912 ~2015
6228817415912457634831912 ~2015
6229118113112458236226312 ~2015
6229696400312459392800712 ~2015
6229758211112459516422312 ~2015
6230192597912460385195912 ~2015
6230215388312460430776712 ~2015
6230536109912461072219912 ~2015
6231013931912462027863912 ~2015
6231014105912462028211912 ~2015
6231645655112463291310312 ~2015
6231904304312463808608712 ~2015
6231954506312463909012712 ~2015
6233469767912466939535912 ~2015
6233735711912467471423912 ~2015
6233804054312467608108712 ~2015
6233898905912467797811912 ~2015
6234121979912468243959912 ~2015
6234258250149874066000912 ~2017
Exponent Prime Factor Dig. Year
6234286980762342869807112 ~2017
623433239411783...64712714 2024
6234457154312468914308712 ~2015
6235017344312470034688712 ~2015
6235090582149880724656912 ~2017
6235971943112471943886312 ~2015
623723466432806...98935114 2023
6237342649112474685298312 ~2015
6237579257912475158515912 ~2015
6237597383912475194767912 ~2015
6237602671149900821368912 ~2017
6237637933737425827602312 ~2016
6237704000312475408000712 ~2015
6237830255912475660511912 ~2015
623787069474453...76015914 2024
6237885601337427313607912 ~2016
6238161799962381617999112 ~2017
6238248365912476496731912 ~2015
6238281563912476563127912 ~2015
6238347805112476695610312 ~2015
6238411409912476822819912 ~2015
6238573612137431441672712 ~2016
6238758482312477516964712 ~2015
6239365791737436194750312 ~2016
6239431834149915454672912 ~2017
Home
4.828.532 digits
e-mail
25-06-01