Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6239499337112478998674312 ~2015
6239640709112479281418312 ~2015
6239666069912479332139912 ~2015
6240214183112480428366312 ~2015
6240338192312480676384712 ~2015
6240447000137442682000712 ~2016
6240781615112481563230312 ~2015
6241214744312482429488712 ~2015
6241407111737448442670312 ~2016
6242125261112484250522312 ~2015
6242481313112484962626312 ~2015
6242822458362428224583112 ~2017
6243421619912486843239912 ~2015
6243581119749948648957712 ~2017
6243723715112487447430312 ~2015
6244181405912488362811912 ~2015
6244713428312489426856712 ~2015
6244967180312489934360712 ~2015
6245067283149960538264912 ~2017
6245166367112490332734312 ~2015
6245585018312491170036712 ~2015
6245817280137474903680712 ~2016
6246283909112492567818312 ~2015
6246520084149972160672912 ~2017
6246655124312493310248712 ~2015
Exponent Prime Factor Dig. Year
6246720724749973765797712 ~2017
6247040795912494081591912 ~2015
6247314914312494629828712 ~2015
6247352840949978822727312 ~2017
6247885273112495770546312 ~2015
6248324125149986593000912 ~2017
6248409497912496818995912 ~2015
6248804864312497609728712 ~2015
6248849947112497699894312 ~2015
6248989988312497979976712 ~2015
6249367070312498734140712 ~2015
6249416783912498833567912 ~2015
6249472273337496833639912 ~2016
6249567679112499135358312 ~2015
6249739357737498436146312 ~2016
6250241036312500482072712 ~2015
6250330987112500661974312 ~2015
6250406693912500813387912 ~2015
6250587175112501174350312 ~2015
6250756699112501513398312 ~2015
6250782322137504693932712 ~2016
6251322559112502645118312 ~2015
6251495947112502991894312 ~2015
6251548237112503096474312 ~2015
6251724382137510346292712 ~2016
Exponent Prime Factor Dig. Year
6251927069912503854139912 ~2015
6252105235112504210470312 ~2015
6252205751912504411503912 ~2015
6253885673912507771347912 ~2015
6253949042312507898084712 ~2015
6254441926150035535408912 ~2017
6254544809912509089619912 ~2015
6254602406312509204812712 ~2015
6254827217912509654435912 ~2015
6255012483162550124831112 ~2017
6255191800362551918003112 ~2017
6255223794137531342764712 ~2017
6255472985912510945971912 ~2015
6255570166750044561333712 ~2017
6255666902312511333804712 ~2015
6256049395112512098790312 ~2015
6256063840362560638403112 ~2017
6256283618312512567236712 ~2015
6256584584312513169168712 ~2015
6256612637912513225275912 ~2015
6256892999912513785999912 ~2015
6257447345337544684071912 ~2017
6257507851337545047107912 ~2017
6257666423912515332847912 ~2015
6257916869912515833739912 ~2015
Exponent Prime Factor Dig. Year
6258411254312516822508712 ~2015
6258926689737553560138312 ~2017
6259039946312518079892712 ~2015
6259329242312518658484712 ~2015
625956590234719...90334314 2024
6259632289112519264578312 ~2015
6259713638312519427276712 ~2015
6259855315112519710630312 ~2015
6260315957912520631915912 ~2015
6260412971912520825943912 ~2015
6261019538312522039076712 ~2015
6261355682312522711364712 ~2015
6261411727112522823454312 ~2015
6261494203112522988406312 ~2015
6261719879912523439759912 ~2015
6261794981912523589963912 ~2015
6262011452312524022904712 ~2015
6262122341912524244683912 ~2015
6262332302312524664604712 ~2015
6262424444312524848888712 ~2015
6262468597112524937194312 ~2015
6262479979112524959958312 ~2015
6262510333737575062002312 ~2017
6262784986150102279888912 ~2017
6262840644137577043864712 ~2017
Home
4.828.532 digits
e-mail
25-06-01