Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
4247445579142474455791112 ~2016
424755894238495117884711 ~2014
4247802671933982421375312 ~2015
424782874198495657483911 ~2014
424788019798495760395911 ~2014
4247901401325487408407912 ~2015
424793510398495870207911 ~2014
424803388438496067768711 ~2014
424810421998496208439911 ~2014
4248279418776469029536712 ~2016
424833080518496661610311 ~2014
424871043118497420862311 ~2014
424872118318497442366311 ~2014
424890127438497802548711 ~2014
424895389198497907783911 ~2014
424911104398498222087911 ~2014
4249282915733994263325712 ~2015
424937343238498746864711 ~2014
4249517329759493242615912 ~2016
424968130918499362618311 ~2014
424971751318499435026311 ~2014
424981855918499637118311 ~2014
425040724918500814498311 ~2014
4250430694125502584164712 ~2015
425087002198501740043911 ~2014
Exponent Prime Factor Dig. Year
425114827918502296558311 ~2014
425123786638502475732711 ~2014
425124095398502481907911 ~2014
4251489934134011919472912 ~2016
425150065918503001318311 ~2014
425183983198503679663911 ~2014
425186556718503731134311 ~2014
425186956798503739135911 ~2014
4252031841176536573139912 ~2016
425214406798504288135911 ~2014
425227281238504545624711 ~2014
425252424238505048484711 ~2014
425253883318505077666311 ~2014
4252638720168042219521712 ~2016
425269274638505385492711 ~2014
425270568238505411364711 ~2014
4252753579759538550115912 ~2016
425275850038505517000711 ~2014
425279244238505584884711 ~2014
425290698838505813976711 ~2014
425308339318506166786311 ~2014
425309234998506184699911 ~2014
425320278718506405574311 ~2014
425341382998506827659911 ~2014
425346348238506926964711 ~2014
Exponent Prime Factor Dig. Year
4253561242134028489936912 ~2016
425381998438507639968711 ~2014
425399521798507990435911 ~2014
425412429838508248596711 ~2014
4254509767734036078141712 ~2016
425468992318509379846311 ~2014
425476135798509522715911 ~2014
4254780568134038244544912 ~2016
4254828016125528968096712 ~2015
4254949284742549492847112 ~2016
4255000333734040002669712 ~2016
4255002024168080032385712 ~2016
425504352838510087056711 ~2014
425509827838510196556711 ~2014
425515845718510316914311 ~2014
425521874398510437487911 ~2014
4255253429325531520575912 ~2015
425526091918510521838311 ~2014
425572580638511451612711 ~2014
4255862845725535177074312 ~2015
425587629238511752584711 ~2014
4255976161725535856970312 ~2015
4256650653725539903922312 ~2015
425671861918513437238311 ~2014
425677611238513552224711 ~2014
Exponent Prime Factor Dig. Year
425678440318513568806311 ~2014
425680383238513607664711 ~2014
4256871918125541231508712 ~2015
425687581438513751628711 ~2014
425690718718513814374311 ~2014
4256945713734055565709712 ~2016
425717505838514350116711 ~2014
4257293069325543758415912 ~2015
425784204598515684091911 ~2014
4258067335734064538685712 ~2016
425826744838516534896711 ~2014
4258586564959620211908712 ~2016
425861167192211...00504915 2025
425871866398517437327911 ~2014
425881183798517623675911 ~2014
425915591638518311832711 ~2014
425922357118518447142311 ~2014
425927076598518541531911 ~2014
425930179198518603583911 ~2014
4259404249725556425498312 ~2015
425956163638519123272711 ~2014
425967210598519344211911 ~2014
426028318798520566375911 ~2014
426029866198520597323911 ~2014
4260401638368166426212912 ~2016
Home
4.933.056 digits
e-mail
25-07-20