Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9630741322777045930581712 ~2018
9630881424157785288544712 ~2018
9631018982319262037964712 ~2017
9631250263119262500526312 ~2017
9631365650319262731300712 ~2017
9631615537119263231074312 ~2017
9632218661357793311967912 ~2018
9632271245919264542491912 ~2017
9632398436319264796872712 ~2017
9633622622319267245244712 ~2017
9634128312157804769872712 ~2018
9634380491919268760983912 ~2017
9635269652319270539304712 ~2017
9636988784319273977568712 ~2017
9637144807177097158456912 ~2018
9637197547119274395094312 ~2017
9638322106177106576848912 ~2018
9638620526319277241052712 ~2017
963943208572833...33195914 2024
9639536693977116293551312 ~2018
9640132034319280264068712 ~2017
9642386567357854319403912 ~2018
9643879919919287759839912 ~2017
9644078495919288156991912 ~2017
9644341400319288682800712 ~2017
Exponent Prime Factor Dig. Year
9644534609919289069219912 ~2017
9646606235919293212471912 ~2017
9646961591919293923183912 ~2017
9647771281757886627690312 ~2018
9648217087119296434174312 ~2017
9648350071757890100430312 ~2018
9648614390977188915127312 ~2018
9648716055757892296334312 ~2018
9649033246157894199476712 ~2018
9649235351919298470703912 ~2017
9649417519119298835038312 ~2017
9649564153119299128306312 ~2017
9650438890777203511125712 ~2018
9651718517357910311103912 ~2018
9651754699119303509398312 ~2017
9652148875119304297750312 ~2017
9654395155119308790310312 ~2017
9655464569919310929139912 ~2017
9655943891919311887783912 ~2017
9656276162319312552324712 ~2017
9656508623919313017247912 ~2017
9657238913919314477827912 ~2017
9657291590977258332727312 ~2018
9657360739357944164435912 ~2018
9657870391119315740782312 ~2017
Exponent Prime Factor Dig. Year
9659816624319319633248712 ~2017
9660232655919320465311912 ~2017
966135662335468...48787914 2025
9661494773919322989547912 ~2017
9662097161919324194323912 ~2017
9662678537919325357075912 ~2017
9663613069119327226138312 ~2017
9665015773119330031546312 ~2017
9665426948319330853896712 ~2017
9665475380319330950760712 ~2017
9665704747119331409494312 ~2017
9665995829919331991659912 ~2017
9666245024319332490048712 ~2017
9667283537919334567075912 ~2017
966745408634273...06144714 2024
9667745899119335491798312 ~2017
9667943192977343545543312 ~2018
9668009863119336019726312 ~2017
9668073401919336146803912 ~2017
9668118409119336236818312 ~2017
9668379212319336758424712 ~2017
9669164198319338328396712 ~2017
9669386545119338773090312 ~2017
9669626843919339253687912 ~2017
9670188512319340377024712 ~2017
Exponent Prime Factor Dig. Year
9670471194158022827164712 ~2018
9670647614319341295228712 ~2017
9671391824319342783648712 ~2017
9671955974319343911948712 ~2017
9672028309119344056618312 ~2017
9672608244158035649464712 ~2018
9672755191119345510382312 ~2017
9672884684319345769368712 ~2017
9673344379119346688758312 ~2017
967516946511040...59319917 2023
9676152291758056913750312 ~2018
9676479439119352958878312 ~2017
9676495391919352990783912 ~2017
9676685756319353371512712 ~2017
9676822805919353645611912 ~2017
9677021273919354042547912 ~2017
9677225767119354451534312 ~2017
9677258168319354516336712 ~2017
9677670278319355340556712 ~2017
967840431071335...94876714 2024
9679226030319358452060712 ~2017
9679382755119358765510312 ~2017
9680829440319361658880712 ~2017
9681924764319363849528712 ~2017
9682026635919364053271912 ~2017
Home
4.724.182 digits
e-mail
25-04-13