Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9682745210319365490420712 ~2017
9682999045119365998090312 ~2017
9684083036319368166072712 ~2017
9685738337358114430023912 ~2018
9685887128319371774256712 ~2017
9686060497758116362986312 ~2018
9686302717119372605434312 ~2017
9686907956319373815912712 ~2017
9687678484158126070904712 ~2018
9688410908319376821816712 ~2017
9689009191119378018382312 ~2017
9689066311358134397867912 ~2018
9690587447919381174895912 ~2017
9691173200319382346400712 ~2017
9691597825119383195650312 ~2017
9691966111758151796670312 ~2018
9692425537758154553226312 ~2018
9692529488319385058976712 ~2017
969259682412384...18728714 2024
9692732600319385465200712 ~2017
9693194255919386388511912 ~2017
9695417159919390834319912 ~2017
9696563975919393127951912 ~2017
9696973824158181842944712 ~2018
9697821701919395643403912 ~2017
Exponent Prime Factor Dig. Year
9698281253919396562507912 ~2017
9698308520319396617040712 ~2017
9698572073919397144147912 ~2017
9698938805919397877611912 ~2017
9699931021119399862042312 ~2017
9699972014319399944028712 ~2017
9700114055919400228111912 ~2017
9701145626319402291252712 ~2017
9702506510319405013020712 ~2017
9702975149919405950299912 ~2017
9703779793119407559586312 ~2017
9704275058319408550116712 ~2017
9704901505358229409031912 ~2018
9705426677977643413423312 ~2018
9706077563919412155127912 ~2017
9708167339919416334679912 ~2017
9708317599358249905595912 ~2018
9708647881358251887287912 ~2018
9709807934319419615868712 ~2017
9710264563119420529126312 ~2017
9710518583919421037167912 ~2017
9710585533119421171066312 ~2017
9710612563119421225126312 ~2017
9710756198319421512396712 ~2017
9711200729919422401459912 ~2017
Exponent Prime Factor Dig. Year
9712235713119424471426312 ~2017
9713046505119426093010312 ~2017
9714321421119428642842312 ~2017
9715438103919430876207912 ~2017
971562500531770...59656715 2023
9715821697119431643394312 ~2017
9715914064777727312517712 ~2018
9718013809119436027618312 ~2017
9720009161919440018323912 ~2017
9720258205119440516410312 ~2017
9720825785919441651571912 ~2017
9720838273119441676546312 ~2017
9721182787758327096726312 ~2018
9721317957758327907746312 ~2018
9721569425919443138851912 ~2017
9721959434977775675479312 ~2018
9722166233919444332467912 ~2017
9723489823119446979646312 ~2017
9724174943919448349887912 ~2017
9724660604319449321208712 ~2017
9725362031919450724063912 ~2017
9725544848319451089696712 ~2017
9725619973119451239946312 ~2017
9725822261919451644523912 ~2017
9725996990319451993980712 ~2017
Exponent Prime Factor Dig. Year
9726164624319452329248712 ~2017
9726747773919453495547912 ~2017
9728402402319456804804712 ~2017
9728531725177828253800912 ~2018
9728542757919457085515912 ~2017
9728607275919457214551912 ~2017
9728748776319457497552712 ~2017
9729600535119459201070312 ~2017
9729622892319459245784712 ~2017
9729711113919459422227912 ~2017
9729715687177837725496912 ~2018
9729763352319459526704712 ~2017
9731498005119462996010312 ~2017
9731705857119463411714312 ~2017
9732074138319464148276712 ~2017
9732338660319464677320712 ~2017
9732609581919465219163912 ~2017
9732987103119465974206312 ~2017
9733354967358400129803912 ~2018
9733535609919467071219912 ~2017
9733616120319467232240712 ~2017
9733769804319467539608712 ~2017
9735410648319470821296712 ~2017
9735462443919470924887912 ~2017
9736668455919473336911912 ~2017
Home
4.724.182 digits
e-mail
25-04-13