Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6293743681112587487362312 ~2015
6294633290312589266580712 ~2015
6294952399112589904798312 ~2015
6295231988312590463976712 ~2015
6295249886312590499772712 ~2015
6295610009912591220019912 ~2015
6296024633912592049267912 ~2015
6296086426150368691408912 ~2017
6296578001950372624015312 ~2017
6296694874137780169244712 ~2017
6296750701337780504207912 ~2017
6297131570312594263140712 ~2015
6297732299950381858399312 ~2017
6297822103737786932622312 ~2017
6297870216137787221296712 ~2017
6298308401912596616803912 ~2015
6298878834137793273004712 ~2017
6299293166312598586332712 ~2015
6299302429112598604858312 ~2015
6300466772312600933544712 ~2015
6300703793912601407587912 ~2015
6301008974312602017948712 ~2015
6301240118312602480236712 ~2015
6301298734750410389877712 ~2017
6301635571112603271142312 ~2015
Exponent Prime Factor Dig. Year
6301797356312603594712712 ~2015
6302351183912604702367912 ~2015
6302585378312605170756712 ~2015
6303211973912606423947912 ~2015
6303333572312606667144712 ~2015
6303615271337821691627912 ~2017
6304060834750432486677712 ~2017
6304418203112608836406312 ~2015
6304660416137827962496712 ~2017
6304770515912609541031912 ~2015
6305074172312610148344712 ~2015
6305382491912610764983912 ~2015
6306049079912612098159912 ~2015
6306066073112612132146312 ~2015
6306421681112612843362312 ~2015
6306898946312613797892712 ~2015
6307488067750459904541712 ~2017
6307873067912615746135912 ~2015
6308329007912616658015912 ~2015
6308814463112617628926312 ~2015
6308922397112617844794312 ~2015
6309019627750472157021712 ~2017
6309462037112618924074312 ~2015
6309474269912618948539912 ~2015
6309578787737857472726312 ~2017
Exponent Prime Factor Dig. Year
6310043921912620087843912 ~2015
6310209797912620419595912 ~2015
6310233907112620467814312 ~2015
6310360559912620721119912 ~2015
6310735897112621471794312 ~2015
6310815737912621631475912 ~2015
6310846247912621692495912 ~2015
6310902505112621805010312 ~2015
6311703133112623406266312 ~2015
6311727367337870364203912 ~2017
6312255686312624511372712 ~2015
6312470179112624940358312 ~2015
6312493203737874959222312 ~2017
6312701918312625403836712 ~2015
6312913513112625827026312 ~2015
6313410751112626821502312 ~2015
6313459297112626918594312 ~2015
6314615246312629230492712 ~2015
6314618444312629236888712 ~2015
6314772431912629544863912 ~2015
6314983855112629967710312 ~2015
6315164082137890984492712 ~2017
6315195809912630391619912 ~2015
631523209915506...90415314 2024
6315424051737892544310312 ~2017
Exponent Prime Factor Dig. Year
6315535925912631071851912 ~2015
6315571417337893428503912 ~2017
6315704179112631408358312 ~2015
6316212050312632424100712 ~2015
6316400450312632800900712 ~2015
6317099954312634199908712 ~2015
6317381519337904289115912 ~2017
6317402021912634804043912 ~2015
6317575505912635151011912 ~2015
6318673246750549385973712 ~2017
6319150447112638300894312 ~2015
6319817771912639635543912 ~2015
6319936316312639872632712 ~2015
6320666695337924000171912 ~2017
6321192631112642385262312 ~2015
6321280886312642561772712 ~2015
6321461173112642922346312 ~2015
6321666077912643332155912 ~2015
632173792433502...10062314 2023
6322304239112644608478312 ~2015
6322856863150582854904912 ~2017
6322928119750583424957712 ~2017
6322964945912645929891912 ~2015
6323111252312646222504712 ~2015
6323620267112647240534312 ~2015
Home
4.828.532 digits
e-mail
25-06-01