Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6378914756312757829512712 ~2015
6379482436138276894616712 ~2017
6379663879112759327758312 ~2015
6379867999112759735998312 ~2015
6380277146312760554292712 ~2015
638036971512858...32364914 2024
6380920745912761841491912 ~2015
6381093038312762186076712 ~2015
6381136921751049095373712 ~2017
6381622330138289733980712 ~2017
6382735000751061880005712 ~2017
6382806625112765613250312 ~2015
6383577131912767154263912 ~2015
6384294806951074358455312 ~2017
6384592519112769185038312 ~2015
6384859380138309156280712 ~2017
6384930970138309585820712 ~2017
6385261724312770523448712 ~2015
6386035151912772070303912 ~2015
6386153052138316918312712 ~2017
6387035065963870350659112 ~2017
6387078692312774157384712 ~2015
6387358669751098869357712 ~2017
6387519097963875190979112 ~2017
6387565481912775130963912 ~2015
Exponent Prime Factor Dig. Year
6387659149112775318298312 ~2015
6387804794951102438359312 ~2017
6387996989951103975919312 ~2017
6388196462312776392924712 ~2015
6388841359112777682718312 ~2015
6389110301912778220603912 ~2015
6389526529738337159178312 ~2017
6389612948312779225896712 ~2015
6389938066138339628396712 ~2017
6390302575738341815454312 ~2017
6390346375151122771000912 ~2017
6390487781912780975563912 ~2015
6390761632138344569792712 ~2017
6391001183912782002367912 ~2015
6391256216312782512432712 ~2015
6391312910312782625820712 ~2015
639139049031765...34208715 2023
6391639513112783279026312 ~2015
6391782083912783564167912 ~2015
6391883707112783767414312 ~2015
6392507521112785015042312 ~2015
6392819168312785638336712 ~2015
6392856175112785712350312 ~2015
6393167534312786335068712 ~2015
6393554741912787109483912 ~2015
Exponent Prime Factor Dig. Year
6393808369112787616738312 ~2015
6393913031912787826063912 ~2015
6394450879112788901758312 ~2015
6394617302312789234604712 ~2015
6394858693112789717386312 ~2015
6394916003912789832007912 ~2015
6394946756312789893512712 ~2015
6395045197338370271183912 ~2017
6395053301912790106603912 ~2015
6395073397112790146794312 ~2015
6395136584312790273168712 ~2015
6395163109112790326218312 ~2015
6395642258312791284516712 ~2015
6395968086138375808516712 ~2017
6396254005112792508010312 ~2015
6396288043112792576086312 ~2015
6396341641112792683282312 ~2015
6396420531163964205311112 ~2017
6396627449912793254899912 ~2015
6396656347112793312694312 ~2015
6396907931912793815863912 ~2015
6397713349112795426698312 ~2015
6397796402312795592804712 ~2015
6397827385963978273859112 ~2017
6398365823912796731647912 ~2015
Exponent Prime Factor Dig. Year
6398401043912796802087912 ~2015
6398458187912796916375912 ~2015
6398625305912797250611912 ~2015
6398742589738392455538312 ~2017
6399555703338397334219912 ~2017
6399702373112799404746312 ~2015
6400539601112801079202312 ~2015
6401101937912802203875912 ~2015
6401338616312802677232712 ~2015
6401753839112803507678312 ~2015
6401861642312803723284712 ~2015
6402238163912804476327912 ~2015
6402795907112805591814312 ~2015
6403002583112806005166312 ~2015
6403433333951227466671312 ~2017
640417113119081...63899914 2025
6404336161112808672322312 ~2015
6404443205912808886411912 ~2015
6404463980312808927960712 ~2015
6404656195112809312390312 ~2015
640531699074727...39136714 2023
6405695881112811391762312 ~2015
6406088515112812177030312 ~2015
6406160636312812321272712 ~2015
6406288141112812576282312 ~2015
Home
4.828.532 digits
e-mail
25-06-01