Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9830955221919661910443912 ~2017
9831350419758988102518312 ~2018
9831358801358988152807912 ~2018
9831665089119663330178312 ~2017
983225993993716...57282314 2023
9832394069919664788139912 ~2017
9832682731119665365462312 ~2017
9832943255919665886511912 ~2017
9833166455919666332911912 ~2017
9833429425119666858850312 ~2017
9833569661919667139323912 ~2017
9835228922978681831383312 ~2018
9835289061759011734370312 ~2018
9837048749919674097499912 ~2017
9837235586319674471172712 ~2017
9837249533919674499067912 ~2017
9837474551919674949103912 ~2017
9837541331919675082663912 ~2017
9837921857919675843715912 ~2017
9838564199919677128399912 ~2017
9838925075919677850151912 ~2017
9840582829119681165658312 ~2017
9840791972319681583944712 ~2017
9841234355919682468711912 ~2017
984178997714724...89008114 2024
Exponent Prime Factor Dig. Year
9841975819119683951638312 ~2017
9843474253119686948506312 ~2017
9844986137919689972275912 ~2017
9845615222978764921783312 ~2018
9846774601119693549202312 ~2017
9846782167119693564334312 ~2017
9847054921778776439373712 ~2018
9848356399359090138395912 ~2018
9848804561919697609123912 ~2017
9849317395119698634790312 ~2017
9849522260319699044520712 ~2017
9849658643919699317287912 ~2017
9849666866319699333732712 ~2017
9850375349919700750699912 ~2017
9850478417978803827343312 ~2018
9850783211919701566423912 ~2017
9850804721919701609443912 ~2017
9851980339119703960678312 ~2017
9852781958319705563916712 ~2017
9853409186319706818372712 ~2017
9853580222319707160444712 ~2017
9854193355119708386710312 ~2017
9854270408319708540816712 ~2017
9854695940319709391880712 ~2017
9854956667919709913335912 ~2017
Exponent Prime Factor Dig. Year
9855567847119711135694312 ~2017
9856304659119712609318312 ~2017
9856638013119713276026312 ~2017
9857037281919714074563912 ~2017
9857742884319715485768712 ~2017
9857749127919715498255912 ~2017
9858286246159149717476712 ~2018
9858403588159150421528712 ~2018
9859926495759159558974312 ~2018
985995671933634...67339915 2023
9861213625119722427250312 ~2017
9861600595119723201190312 ~2017
9862461906159174771436712 ~2018
9863020406319726040812712 ~2017
9863213905119726427810312 ~2017
9863485709919726971419912 ~2017
9863841853119727683706312 ~2017
9865280882319730561764712 ~2017
9865455071919730910143912 ~2017
9865609067919731218135912 ~2017
9866541535119733083070312 ~2017
9867275937759203655626312 ~2018
9868079294319736158588712 ~2017
9868148663919736297327912 ~2017
9869957834319739915668712 ~2017
Exponent Prime Factor Dig. Year
9870797545119741595090312 ~2017
987088217274580...28132914 2023
9871308853119742617706312 ~2017
987156722412428...37128714 2024
9871713970159230283820712 ~2018
9871923220159231539320712 ~2018
9872085284319744170568712 ~2017
987319972913811...95432714 2024
9873222551919746445103912 ~2017
9873585458319747170916712 ~2017
9873612638319747225276712 ~2017
9874146727119748293454312 ~2017
9875598113919751196227912 ~2017
9875618618319751237236712 ~2017
9876716531919753433063912 ~2017
9876716699919753433399912 ~2017
9876957371919753914743912 ~2017
9877074523119754149046312 ~2017
9877220096319754440192712 ~2017
9877282511359263695067912 ~2018
9877681385359266088311912 ~2018
9877887583119755775166312 ~2017
9878696096319757392192712 ~2017
9879535934319759071868712 ~2017
9879698045919759396091912 ~2017
Home
4.724.182 digits
e-mail
25-04-13