Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6352870817912705741635912 ~2015
6353097194312706194388712 ~2015
6353384034138120304204712 ~2017
6353603689112707207378312 ~2015
6353609689112707219378312 ~2015
6353929384138123576304712 ~2017
635408568619099...02495314 2025
6354170669912708341339912 ~2015
6354242509112708485018312 ~2015
6354271279738125627678312 ~2017
6354383797112708767594312 ~2015
635459072395998...43361714 2023
6355081856312710163712712 ~2015
6355096769912710193539912 ~2015
6355287733112710575466312 ~2015
6355565466138133392796712 ~2017
6355656625338133939751912 ~2017
6356363971738138183830312 ~2017
6356458181912712916363912 ~2015
6356858533112713717066312 ~2015
6356960768312713921536712 ~2015
6357708362312715416724712 ~2015
6358138634312716277268712 ~2015
6358254953912716509907912 ~2015
6358331725112716663450312 ~2015
Exponent Prime Factor Dig. Year
6358520660312717041320712 ~2015
6358615076312717230152712 ~2015
635899634712390...26509714 2023
6359024461750872195693712 ~2017
6359812520312719625040712 ~2015
6360662318312721324636712 ~2015
6360870644312721741288712 ~2015
6361010425338166062551912 ~2017
6361707857912723415715912 ~2015
6361918837750895350701712 ~2017
6361972034312723944068712 ~2015
6362157572312724315144712 ~2015
6362167031912724334063912 ~2015
6362224670312724449340712 ~2015
6362229073112724458146312 ~2015
6362414965112724829930312 ~2015
6362643122312725286244712 ~2015
6363050618312726101236712 ~2015
6363353731338180122387912 ~2017
6363563741912727127483912 ~2015
6363661835912727323671912 ~2015
6363828309738182969858312 ~2017
636420574032515...85665715 2024
6364739484138188436904712 ~2017
6364783757912729567515912 ~2015
Exponent Prime Factor Dig. Year
6364844904138189069424712 ~2017
6365245749738191474498312 ~2017
6366366133150930929064912 ~2017
6366558728312733117456712 ~2015
6366742201963667422019112 ~2017
6367279163912734558327912 ~2015
6367543814312735087628712 ~2015
6367626971912735253943912 ~2015
6367730108950941840871312 ~2017
6367757513950942060111312 ~2017
6368136541112736273082312 ~2015
6368149865912736299731912 ~2015
6368272789738209636738312 ~2017
6368494085912736988171912 ~2015
6368964581912737929163912 ~2015
6369024539338214147235912 ~2017
6369033632312738067264712 ~2015
6369209563338215257379912 ~2017
6369604969112739209938312 ~2015
6369714347912739428695912 ~2015
6369722501912739445003912 ~2015
6369960761912739921523912 ~2015
6371078005112742156010312 ~2015
6371199983912742399967912 ~2015
6371226463112742452926312 ~2015
Exponent Prime Factor Dig. Year
6371359880312742719760712 ~2015
6371949973112743899946312 ~2015
6372279944312744559888712 ~2015
6372445235912744890471912 ~2015
6373564450750988515605712 ~2017
6373640167112747280334312 ~2015
6373680809912747361619912 ~2015
6373681741112747363482312 ~2015
6374275436312748550872712 ~2015
6374317763912748635527912 ~2015
6374368219963743682199112 ~2017
6374672539112749345078312 ~2015
6374999639912749999279912 ~2015
6375306176312750612352712 ~2015
6375592475912751184951912 ~2015
6375946141112751892282312 ~2015
6375996272312751992544712 ~2015
6376927752763769277527112 ~2017
6377063057951016504463312 ~2017
6377112191912754224383912 ~2015
6377564719112755129438312 ~2015
6377584232312755168464712 ~2015
6378086467112756172934312 ~2015
6378633122312757266244712 ~2015
6378859375112757718750312 ~2015
Home
4.828.532 digits
e-mail
25-06-01