Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
6461432168312922864336712 ~2015
6461526287912923052575912 ~2015
6461619683912923239367912 ~2015
6462056408312924112816712 ~2015
6462640512764626405127112 ~2017
6462756449912925512899912 ~2015
6462830089738776980538312 ~2017
6462904478312925808956712 ~2015
6462993517112925987034312 ~2015
6463891133912927782267912 ~2015
646401289792288...65856714 2023
6464161397912928322795912 ~2015
6464179513112928359026312 ~2015
6464409359338786456155912 ~2017
6464990719751719925757712 ~2017
6465303308312930606616712 ~2015
6465350783912930701567912 ~2015
6465851009912931702019912 ~2015
6465892934312931785868712 ~2015
6466144448312932288896712 ~2015
6466845749912933691499912 ~2015
6468379682312936759364712 ~2015
6468860413112937720826312 ~2015
6468923981912937847963912 ~2015
6469160456312938320912712 ~2015
Exponent Prime Factor Dig. Year
6469250947112938501894312 ~2015
6469270649338815623895912 ~2017
6469311253112938622506312 ~2015
6469340233738816041402312 ~2017
6470079173338820475039912 ~2017
6470493247338822959483912 ~2017
6470497303751763978429712 ~2017
6470593970312941187940712 ~2015
6471032791112942065582312 ~2015
6471039133112942078266312 ~2015
6471192074312942384148712 ~2015
647184717432124...26052715 2025
6471923071338831538427912 ~2017
6472222321112944444642312 ~2015
6472503185912945006371912 ~2015
6472564207112945128414312 ~2015
6472650860312945301720712 ~2015
6472690243112945380486312 ~2015
6473254753112946509506312 ~2015
6473397563912946795127912 ~2015
6473899849112947799698312 ~2015
6474068072312948136144712 ~2015
6474088616312948177232712 ~2015
6474210698312948421396712 ~2015
6474882847112949765694312 ~2015
Exponent Prime Factor Dig. Year
6475144411112950288822312 ~2015
6476230717112952461434312 ~2015
6476498767112952997534312 ~2015
6477275389112954550778312 ~2015
6477284503738863707022312 ~2017
6477875939912955751879912 ~2015
6478147519112956295038312 ~2015
6478331639912956663279912 ~2015
6478703111912957406223912 ~2015
6478903619912957807239912 ~2015
6478951508312957903016712 ~2015
6478996130312957992260712 ~2015
6479139820751833118565712 ~2017
6479154467912958308935912 ~2015
6479405605112958811210312 ~2015
6479730500312959461000712 ~2015
6480268712312960537424712 ~2015
6480338682138882032092712 ~2017
6480581477912961162955912 ~2015
6480787139912961574279912 ~2015
6480788528312961577056712 ~2015
6480919777738885518666312 ~2017
6480934792151847478336912 ~2017
6482384942312964769884712 ~2015
6482700013112965400026312 ~2015
Exponent Prime Factor Dig. Year
6483324365912966648731912 ~2015
6483658654138901951924712 ~2017
6484172479112968344958312 ~2015
6485474603912970949207912 ~2015
6485773627738914641766312 ~2017
6486033753738916202522312 ~2017
6486110267912972220535912 ~2015
6486175664312972351328712 ~2015
6486218701112972437402312 ~2015
6486716917738920301506312 ~2017
648675028791200...32615115 2025
6487015871912974031743912 ~2015
6487493441912974986883912 ~2015
6487720159112975440318312 ~2015
6488084671112976169342312 ~2015
6489071513912978143027912 ~2015
6489811583912979623167912 ~2015
6489900815912979801631912 ~2015
6490885474138945312844712 ~2017
6491070449912982140899912 ~2015
6491118209951928945679312 ~2017
6491280482312982560964712 ~2015
6491806639751934453117712 ~2017
6491962889912983925779912 ~2015
6492350156312984700312712 ~2015
Home
4.828.532 digits
e-mail
25-06-01