Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
7063504973914127009947912 ~2016
7064931965956519455727312 ~2017
7065794864314131589728712 ~2016
706604175013886...62555114 2025
7066070045914132140091912 ~2016
7066072825114132145650312 ~2016
7066141217914132282435912 ~2016
7066414400314132828800712 ~2016
7066673554370666735543112 ~2017
7066759058314133518116712 ~2016
7067039597342402237583912 ~2017
7067189731114134379462312 ~2016
7067317687756538541501712 ~2017
7068145130314136290260712 ~2016
7068652885114137305770312 ~2016
7069075627342414453763912 ~2017
7069409282314138818564712 ~2016
7070220163114140440326312 ~2016
7071271675114142543350312 ~2016
7071305329114142610658312 ~2016
7071360397742428162386312 ~2017
7071423451114142846902312 ~2016
7071709109914143418219912 ~2016
7072058257114144116514312 ~2016
7072761770314145523540712 ~2016
Exponent Prime Factor Dig. Year
7072860019114145720038312 ~2016
7073128673342438772039912 ~2017
7073394197914146788395912 ~2016
7073405330314146810660712 ~2016
7073943216142443659296712 ~2017
7074214853914148429707912 ~2016
7074544153156596353224912 ~2017
7075017659914150035319912 ~2016
7075208345914150416691912 ~2016
707533028034712...66679914 2023
707538054593282...73297714 2023
7075441357114150882714312 ~2016
7075640197342453841183912 ~2017
7076901719914153803439912 ~2016
7077099583114154199166312 ~2016
7077149882314154299764712 ~2016
7077382361914154764723912 ~2016
7077668171914155336343912 ~2016
7077762871114155525742312 ~2016
7077916517914155833035912 ~2016
7078581182314157162364712 ~2016
7078825979914157651959912 ~2016
7078912136314157824272712 ~2016
7080437372314160874744712 ~2016
7080769501742484617010312 ~2017
Exponent Prime Factor Dig. Year
7081035616142486213696712 ~2017
7081626296956653010375312 ~2017
7081922765914163845531912 ~2016
7082007385114164014770312 ~2016
7082133626314164267252712 ~2016
7082617550314165235100712 ~2016
7082880043114165760086312 ~2016
7083548953114167097906312 ~2016
7084286672314168573344712 ~2016
7084495412314168990824712 ~2016
7085099881114170199762312 ~2016
7085972369914171944739912 ~2016
7086066625114172133250312 ~2016
7086221981914172443963912 ~2016
7086596041114173192082312 ~2016
7086627374314173254748712 ~2016
7086859994314173719988712 ~2016
7087017667342522106003912 ~2017
7087322993914174645987912 ~2016
7087888019956703104159312 ~2017
7088008369114176016738312 ~2016
7088042575114176085150312 ~2016
7088339486314176678972712 ~2016
7088505421114177010842312 ~2016
7088575562314177151124712 ~2016
Exponent Prime Factor Dig. Year
7088817919970888179199112 ~2017
7089235253914178470507912 ~2016
7090224055114180448110312 ~2016
7090363667914180727335912 ~2016
7090963217914181926435912 ~2016
7091004528770910045287112 ~2017
7091178307342547069843912 ~2017
7091992811914183985623912 ~2016
7092104563114184209126312 ~2016
7092583744142555502464712 ~2017
7092710339914185420679912 ~2016
7092835376314185670752712 ~2016
7092971867914185943735912 ~2016
7094412067114188824134312 ~2016
7094419897342566519383912 ~2017
7094600732314189201464712 ~2016
7094794561114189589122312 ~2016
7094810717914189621435912 ~2016
7094910082142569460492712 ~2017
7095280649914190561299912 ~2016
7095925286314191850572712 ~2016
7095990394756767923157712 ~2017
7096277997170962779971112 ~2017
7096596067114193192134312 ~2016
7096775977114193551954312 ~2016
Home
4.828.532 digits
e-mail
25-06-01