Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10376853751120753707502312 ~2017
10376994173362261965039912 ~2018
10377430073920754860147912 ~2017
10378579513120757159026312 ~2017
10379875735120759751470312 ~2017
10379906149120759812298312 ~2017
10381207988320762415976712 ~2017
10381419211362288515267912 ~2018
10381735897120763471794312 ~2017
10381781964162290691784712 ~2018
10382426738320764853476712 ~2017
10382566631920765133263912 ~2017
10382923100320765846200712 ~2017
10382998735120765997470312 ~2017
10383835231120767670462312 ~2017
10384288496320768576992712 ~2017
10385204803120770409606312 ~2017
10385300281120770600562312 ~2017
10385916073120771832146312 ~2017
1038679229811726...99442315 2023
10386972002320773944004712 ~2017
10387274383362323646299912 ~2018
10387338152320774676304712 ~2017
10388084153920776168307912 ~2017
10388231365120776462730312 ~2017
Exponent Prime Factor Dig. Year
10388784133120777568266312 ~2017
10389009674320778019348712 ~2017
10389206681920778413363912 ~2017
10389550771362337304627912 ~2018
10390191991120780383982312 ~2017
10391333545362348001271912 ~2018
10392477818320784955636712 ~2017
10392710125120785420250312 ~2017
10393023923920786047847912 ~2017
10393342789120786685578312 ~2017
10393394954320786789908712 ~2017
10394129803120788259606312 ~2017
10394310266320788620532712 ~2017
10396040647762376243886312 ~2018
10396496128162378976768712 ~2018
10396797056320793594112712 ~2017
10397665951120795331902312 ~2017
10397774568162386647408712 ~2018
10398309961120796619922312 ~2017
10398797095120797594190312 ~2017
10399028768320798057536712 ~2017
10399628519920799257039912 ~2017
10399840490320799680980712 ~2017
10399948753362399692519912 ~2018
10400186449362401118695912 ~2018
Exponent Prime Factor Dig. Year
10400196029920800392059912 ~2017
10400476195762402857174312 ~2018
10400811893362404871359912 ~2018
10401809497762410856986312 ~2018
10402893566320805787132712 ~2017
10404122069362424732415912 ~2018
10404568427920809136855912 ~2017
10405141832320810283664712 ~2017
1040545608615723...47355114 2024
10405677787120811355574312 ~2017
10405727353120811454706312 ~2017
10406517701920813035403912 ~2017
10406923696162441542176712 ~2018
10407586247920815172495912 ~2017
10407671707120815343414312 ~2017
10408877323120817754646312 ~2017
10409161379920818322759912 ~2017
10409843960320819687920712 ~2017
10409861858320819723716712 ~2017
10410505027120821010054312 ~2017
10410710513920821421027912 ~2017
10410930271120821860542312 ~2017
10411503061120823006122312 ~2017
10411600295362469601771912 ~2018
10412696582320825393164712 ~2017
Exponent Prime Factor Dig. Year
10413188504320826377008712 ~2017
10413314119120826628238312 ~2017
1041347707693478...43684714 2023
10413920661762483523970312 ~2018
10414014595120828029190312 ~2017
10415233009762491398058312 ~2018
10416138408162496830448712 ~2018
10417375508320834751016712 ~2017
10417873657762507241946312 ~2018
10418083481920836166963912 ~2017
10418298619120836597238312 ~2017
10420727159920841454319912 ~2017
10422152617362532915703912 ~2018
10422199700320844399400712 ~2017
10423653239920847306479912 ~2017
10424382955362546297731912 ~2018
10424899565920849799131912 ~2017
10426350254320852700508712 ~2017
10427408636320854817272712 ~2017
10427738203120855476406312 ~2017
10428341267920856682535912 ~2017
10428393656320856787312712 ~2017
10428995323120857990646312 ~2017
10429496228320858992456712 ~2017
10431487736320862975472712 ~2017
Home
4.724.182 digits
e-mail
25-04-13