Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11159046727366954280363912 ~2018
11159378792322318757584712 ~2017
11160270401922320540803912 ~2017
11160380783922320761567912 ~2017
11161051382322322102764712 ~2017
11161731589122323463178312 ~2017
11162249791122324499582312 ~2017
11162345935122324691870312 ~2017
11163785266166982711596712 ~2018
11164330865366985985191912 ~2018
11166885283122333770566312 ~2017
11166918830322333837660712 ~2017
11167788973122335577946312 ~2017
11168220913767009325482312 ~2018
11168519237922337038475912 ~2017
11168552480322337104960712 ~2017
11168665403922337330807912 ~2017
11168825268167012951608712 ~2018
11169039212322338078424712 ~2017
11169844712322339689424712 ~2017
11170501430322341002860712 ~2017
11171219191767027315150312 ~2018
11171249755122342499510312 ~2017
11171933762322343867524712 ~2017
11172185837367033115023912 ~2018
Exponent Prime Factor Dig. Year
11172805008167036830048712 ~2018
11173348559922346697119912 ~2017
11173481540322346963080712 ~2017
11173615249122347230498312 ~2017
11173892648322347785296712 ~2017
11174036899122348073798312 ~2017
11174185867122348371734312 ~2017
11176046645922352093291912 ~2017
11176501973922353003947912 ~2017
11177489516322354979032712 ~2017
11177838497922355676995912 ~2017
11178555715122357111430312 ~2017
11179354537367076127223912 ~2018
11179670411922359340823912 ~2017
11180352103122360704206312 ~2017
11180590301922361180603912 ~2017
11180850247122361700494312 ~2017
11181068563122362137126312 ~2017
11181272325767087633954312 ~2018
11182670921367096025527912 ~2018
11182702531122365405062312 ~2017
11183101154322366202308712 ~2017
11183573203122367146406312 ~2017
11184430585122368861170312 ~2017
11184629761122369259522312 ~2017
Exponent Prime Factor Dig. Year
11185302409367111814455912 ~2018
11186299043922372598087912 ~2017
11187014198322374028396712 ~2017
11187403339122374806678312 ~2017
11187487135122374974270312 ~2017
11188144052322376288104712 ~2017
11190003116322380006232712 ~2017
11190364571922380729143912 ~2017
11190659006322381318012712 ~2017
11191171033367147026199912 ~2018
11191794256167150765536712 ~2018
11192172461922384344923912 ~2017
1119260017632417...38080914 2024
11192636693922385273387912 ~2017
11193057049122386114098312 ~2017
11193548009922387096019912 ~2017
11193858812322387717624712 ~2017
11195540491767173242950312 ~2018
11196145855122392291710312 ~2017
1119617243633835...66763915 2023
11196528895122393057790312 ~2017
11196555197922393110395912 ~2017
11196696340167180178040712 ~2018
11196963065922393926131912 ~2017
11198511235367191067411912 ~2018
Exponent Prime Factor Dig. Year
11199222991122398445982312 ~2017
11199587729922399175459912 ~2017
11199629396322399258792712 ~2017
11199787697922399575395912 ~2017
11199844075122399688150312 ~2017
11200052365367200314191912 ~2018
11200587768167203526608712 ~2018
11201761991922403523983912 ~2017
11202865031367217190187912 ~2018
11202997193922405994387912 ~2017
11203669247922407338495912 ~2017
11203865888322407731776712 ~2017
11204528990322409057980712 ~2017
11204983089767229898538312 ~2018
11205807728322411615456712 ~2017
11206016102322412032204712 ~2017
11206120981122412241962312 ~2017
11206493831922412987663912 ~2017
11208706237122417412474312 ~2017
11209453097922418906195912 ~2017
11209758320322419516640712 ~2017
11209975543122419951086312 ~2017
11210484683922420969367912 ~2017
11210898637122421797274312 ~2017
11211844243122423688486312 ~2017
Home
4.724.182 digits
e-mail
25-04-13