Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12396747770324793495540712 ~2018
12399600176324799200352712 ~2018
12399988343924799976687912 ~2018
12400036028324800072056712 ~2018
12401181608324802363216712 ~2018
12401411837924802823675912 ~2018
1240165677712108...52107114 2024
12402615305924805230611912 ~2018
12403087375124806174750312 ~2018
12403205396324806410792712 ~2018
12404180171374425081027912 ~2019
1240571724712704...59867914 2024
12406111451924812222903912 ~2018
12407601835124815203670312 ~2018
12409045219124818090438312 ~2018
12409089671924818179343912 ~2018
12410170832324820341664712 ~2018
1241104977473202...41872714 2024
1241270627991462...97722315 2024
1241279816932609...51868715 2023
12413949572324827899144712 ~2018
12414269593124828539186312 ~2018
12414573293924829146587912 ~2018
12415325593124830651186312 ~2018
12415862731774495176390312 ~2019
Exponent Prime Factor Dig. Year
12415939291124831878582312 ~2018
12416040086324832080172712 ~2018
12417307204174503843224712 ~2019
12417987101924835974203912 ~2018
12418209817124836419634312 ~2018
12418322035124836644070312 ~2018
12420002933924840005867912 ~2018
12420281205774521687234312 ~2019
12420388723124840777446312 ~2018
12421584617924843169235912 ~2018
12422562092324845124184712 ~2018
12423887189374543323135912 ~2019
12424890062324849780124712 ~2018
12425802505124851605010312 ~2018
12425983513124851967026312 ~2018
12426346508324852693016712 ~2018
12428013017924856026035912 ~2018
12429543181124859086362312 ~2018
12430378087124860756174312 ~2018
12432070256324864140512712 ~2018
12435267271124870534542312 ~2018
12435464537924870929075912 ~2018
12435541802324871083604712 ~2018
12435889285124871778570312 ~2018
12437075489924874150979912 ~2018
Exponent Prime Factor Dig. Year
12439578761924879157523912 ~2018
12441480437924882960875912 ~2018
12442319186324884638372712 ~2018
12442357603774654145622312 ~2019
12443498989124886997978312 ~2018
12444434413124888868826312 ~2018
12445240832324890481664712 ~2018
12445373275124890746550312 ~2018
12447038629124894077258312 ~2018
12449834267924899668535912 ~2018
12450902804324901805608712 ~2018
12451089008324902178016712 ~2018
12453193109924906386219912 ~2018
12456011515374736069091912 ~2019
12456167201924912334403912 ~2018
12457717651124915435302312 ~2018
12458367638324916735276712 ~2018
12458716019924917432039912 ~2018
12458783455124917566910312 ~2018
12459143405924918286811912 ~2018
12459409991924918819983912 ~2018
12459418783124918837566312 ~2018
12459458933374756753599912 ~2019
12460871171924921742343912 ~2018
12461725393374770352359912 ~2019
Exponent Prime Factor Dig. Year
12463197163124926394326312 ~2018
12463279333124926558666312 ~2018
12465043994324930087988712 ~2018
12465661951124931323902312 ~2018
12467396672324934793344712 ~2018
12469260649124938521298312 ~2018
12471674569124943349138312 ~2018
12472121135374832726811912 ~2019
12473040416324946080832712 ~2018
12473454626324946909252712 ~2018
12475488515924950977031912 ~2018
12477405058174864430348712 ~2019
12477802262324955604524712 ~2018
12477824539124955649078312 ~2018
12479225069924958450139912 ~2018
12482730398324965460796712 ~2018
12483765805124967531610312 ~2018
12485562293924971124587912 ~2018
12485711435924971422871912 ~2018
12485817889124971635778312 ~2018
12486471187124972942374312 ~2018
12486994933124973989866312 ~2018
12487240351124974480702312 ~2018
12487374218324974748436712 ~2018
12487874432324975748864712 ~2018
Home
4.724.182 digits
e-mail
25-04-13