Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13032141504178192849024712 ~2019
13032180979126064361958312 ~2018
13032448261126064896522312 ~2018
13032570619126065141238312 ~2018
13034258125126068516250312 ~2018
13034364251926068728503912 ~2018
13034560201126069120402312 ~2018
13034700422326069400844712 ~2018
13036215571126072431142312 ~2018
13037165419126074330838312 ~2018
13038648169126077296338312 ~2018
13039089653926078179307912 ~2018
13039727239126079454478312 ~2018
13040937838178245627028712 ~2019
13041692597926083385195912 ~2018
13042615478326085230956712 ~2018
13044138188326088276376712 ~2018
13045792885126091585770312 ~2018
13050333519778302001118312 ~2019
13050800257126101600514312 ~2018
13052759481778316556890312 ~2019
1305330640972584...69120714 2024
13054045617778324273706312 ~2019
13054508369926109016739912 ~2018
13054559699926109119399912 ~2018
Exponent Prime Factor Dig. Year
13055049530326110099060712 ~2018
1305614454733734...40527914 2023
13057196305126114392610312 ~2018
13057626263378345757579912 ~2019
13058513539126117027078312 ~2018
13058856661126117713322312 ~2018
13059417421126118834842312 ~2018
13059482144326118964288712 ~2018
13059680003926119360007912 ~2018
13059706019926119412039912 ~2018
13060046971126120093942312 ~2018
13060387775926120775551912 ~2018
13060475852326120951704712 ~2018
13060493422178362960532712 ~2019
13062765836326125531672712 ~2018
13062831347926125662695912 ~2018
13063103809126126207618312 ~2018
13064409860326128819720712 ~2018
13065574763926131149527912 ~2018
13066321967926132643935912 ~2018
1306667360031257...03488715 2025
13069565335126139130670312 ~2018
13070762192326141524384712 ~2018
13071145256326142290512712 ~2018
13071297601126142595202312 ~2018
Exponent Prime Factor Dig. Year
13071554658178429327948712 ~2019
13072013489926144026979912 ~2018
13072727101126145454202312 ~2018
1307329635791568...62948114 2024
13073836867126147673734312 ~2018
13075310045926150620091912 ~2018
13075410324178452461944712 ~2019
13076640209926153280419912 ~2018
13078353752326156707504712 ~2018
13079894669926159789339912 ~2018
13080804971926161609943912 ~2018
13082023104178492138624712 ~2019
13082157353926164314707912 ~2018
13082224955926164449911912 ~2018
13083579325126167158650312 ~2018
13084463431126168926862312 ~2018
13085111999926170223999912 ~2018
13087133383778522800302312 ~2019
13087812883126175625766312 ~2018
1308836625312628...36224915 2023
13088452379926176904759912 ~2018
13088874295126177748590312 ~2018
13088926118326177852236712 ~2018
13091048407778546290446312 ~2019
13092140209126184280418312 ~2018
Exponent Prime Factor Dig. Year
13092233575126184467150312 ~2018
13092565181926185130363912 ~2018
13092644231926185288463912 ~2018
13093670484178562022904712 ~2019
13094018203126188036406312 ~2018
13094504843926189009687912 ~2018
13094644586326189289172712 ~2018
13095165998326190331996712 ~2018
13095349667378572098003912 ~2019
13095588703126191177406312 ~2018
13097092243126194184486312 ~2018
13097746889926195493779912 ~2018
13098012829126196025658312 ~2018
13098172265926196344531912 ~2018
13100716553926201433107912 ~2018
13100812723126201625446312 ~2018
13101114455926202228911912 ~2018
13102005613126204011226312 ~2018
13102935139126205870278312 ~2018
13103248694326206497388712 ~2018
13103877215926207754431912 ~2018
13105118498326210236996712 ~2018
13107430253926214860507912 ~2018
13107920492326215840984712 ~2018
13108647175126217294350312 ~2018
Home
4.724.182 digits
e-mail
25-04-13