Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12333283015124666566030312 ~2018
12334598546324669197092712 ~2018
12336296279924672592559912 ~2018
12337164446324674328892712 ~2018
12337632013124675264026312 ~2018
12337658850174025953100712 ~2019
12338923421924677846843912 ~2018
12339455150324678910300712 ~2018
12339759671924679519343912 ~2018
12340086095924680172191912 ~2018
12340623353924681246707912 ~2018
12340799827124681599654312 ~2018
12342781745924685563491912 ~2018
12343421809124686843618312 ~2018
12343689769124687379538312 ~2018
12343738424324687476848712 ~2018
12344756323124689512646312 ~2018
12346207981774077247890312 ~2019
12348042361124696084722312 ~2018
12348165235124696330470312 ~2018
12348368237924696736475912 ~2018
12348900481124697800962312 ~2018
12349458937124698917874312 ~2018
12349652948324699305896712 ~2018
12350558965374103353791912 ~2019
Exponent Prime Factor Dig. Year
12351494755124702989510312 ~2018
12352246561124704493122312 ~2018
12352775875124705551750312 ~2018
1235288920934125...95906314 2024
12352982540324705965080712 ~2018
12353447849924706895699912 ~2018
12353985288174123911728712 ~2019
12354600491924709200983912 ~2018
12354640471124709280942312 ~2018
12355593854324711187708712 ~2018
12356090066324712180132712 ~2018
12356258189924712516379912 ~2018
12356616445124713232890312 ~2018
12357025655924714051311912 ~2018
12357332852324714665704712 ~2018
12357984449924715968899912 ~2018
12358353974324716707948712 ~2018
12359567342324719134684712 ~2018
12361206717774167240306312 ~2019
12361554173924723108347912 ~2018
12362044463924724088927912 ~2018
12362240017374173440103912 ~2019
12363612530324727225060712 ~2018
12364478507924728957015912 ~2018
12365363749124730727498312 ~2018
Exponent Prime Factor Dig. Year
12366429739124732859478312 ~2018
12367367618324734735236712 ~2018
12367885475924735770951912 ~2018
12368037596324736075192712 ~2018
1236813373632671...87040914 2024
12368620787374211724723912 ~2019
12368727307124737454614312 ~2018
12370106189924740212379912 ~2018
12370199857124740399714312 ~2018
12370365521924740731043912 ~2018
12370576340324741152680712 ~2018
12371719709924743439419912 ~2018
12372377485124744754970312 ~2018
12372972757124745945514312 ~2018
12373418972324746837944712 ~2018
12373968965924747937931912 ~2018
12374347903124748695806312 ~2018
12375205441124750410882312 ~2018
12375300985124750601970312 ~2018
1237669594391485...13268114 2024
12380022473924760044947912 ~2018
12381030917374286185503912 ~2019
12381407237924762814475912 ~2018
1238261953032600...01363114 2024
12385028191124770056382312 ~2018
Exponent Prime Factor Dig. Year
12385301081924770602163912 ~2018
12385305983924770611967912 ~2018
12386794693374320768159912 ~2019
12387236823774323420942312 ~2019
1238878354311883...98551314 2024
12388832552324777665104712 ~2018
12389002502324778005004712 ~2018
12389230133924778460267912 ~2018
12390142799924780285599912 ~2018
12390323677124780647354312 ~2018
12390553810174343322860712 ~2019
12391303073924782606147912 ~2018
12392673212324785346424712 ~2018
12393425798324786851596712 ~2018
12393778832324787557664712 ~2018
12394038722324788077444712 ~2018
12394055149124788110298312 ~2018
12394604279924789208559912 ~2018
12394949522324789899044712 ~2018
12395252955774371517734312 ~2019
12395838193124791676386312 ~2018
12396246960174377481760712 ~2019
12396353029124792706058312 ~2018
12396555602324793111204712 ~2018
12396728102324793456204712 ~2018
Home
4.724.182 digits
e-mail
25-04-13