Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1385060744534626...86730314 2023
13851467491127702934982312 ~2018
13854349385927708698771912 ~2018
13854607229927709214459912 ~2018
13854689084327709378168712 ~2018
13855203413927710406827912 ~2018
13856644409927713288819912 ~2018
13856901728327713803456712 ~2018
13857397945127714795890312 ~2018
13858568291927717136583912 ~2018
13858767086327717534172712 ~2018
13858875667127717751334312 ~2018
13859139755927718279511912 ~2018
13859218909127718437818312 ~2018
13860672365927721344731912 ~2018
13861362857927722725715912 ~2018
13862171360327724342720712 ~2018
13865053733927730107467912 ~2018
13868275193927736550387912 ~2018
13868765293127737530586312 ~2018
13870081496327740162992712 ~2018
13873365379127746730758312 ~2018
13873757177927747514355912 ~2018
13874587961927749175923912 ~2018
13875180505127750361010312 ~2018
Exponent Prime Factor Dig. Year
13875332258327750664516712 ~2018
13875838493927751676987912 ~2018
13876297760327752595520712 ~2018
13876482205127752964410312 ~2018
1387649721072470...03504714 2024
13877272868327754545736712 ~2018
13877690156327755380312712 ~2018
13878553039127757106078312 ~2018
13878593528327757187056712 ~2018
13878787565927757575131912 ~2018
13880399087927760798175912 ~2018
13880427743927760855487912 ~2018
13881198431927762396863912 ~2018
13882627910327765255820712 ~2018
13882672045127765344090312 ~2018
13882752494327765504988712 ~2018
13882758043127765516086312 ~2018
1388299877892415...87528714 2024
13883035826327766071652712 ~2018
13883943919127767887838312 ~2018
13885064336327770128672712 ~2018
13886207738327772415476712 ~2018
13886439169127772878338312 ~2018
13887777497927775554995912 ~2018
13888220261927776440523912 ~2018
Exponent Prime Factor Dig. Year
13889453336327778906672712 ~2018
1388951377216639...83063914 2023
1389159990678251...44579914 2023
13893659401127787318802312 ~2018
13893684449927787368899912 ~2018
13893725893127787451786312 ~2018
13894869824327789739648712 ~2018
13895988179927791976359912 ~2018
13897412485127794824970312 ~2018
13898045531927796091063912 ~2018
13899212353127798424706312 ~2018
13899771308327799542616712 ~2018
13901244161927802488323912 ~2018
13902353129927804706259912 ~2018
13903363892327806727784712 ~2018
13903503800327807007600712 ~2018
13903592915927807185831912 ~2018
13904219105927808438211912 ~2018
13907592134327815184268712 ~2018
13908919826327817839652712 ~2018
13911331298327822662596712 ~2018
13911774835127823549670312 ~2018
13912649581127825299162312 ~2018
13913739029927827478059912 ~2018
13917651197927835302395912 ~2018
Exponent Prime Factor Dig. Year
13918089107927836178215912 ~2018
13919062507127838125014312 ~2018
13922116337927844232675912 ~2018
13922421763127844843526312 ~2018
13925149805927850299611912 ~2018
1392567010937686...00333714 2023
13926241583927852483167912 ~2018
13927447151927854894303912 ~2018
13927834513127855669026312 ~2018
13928735507927857471015912 ~2018
13928784971927857569943912 ~2018
13929061943927858123887912 ~2018
1392945561613315...36631914 2024
13929837809927859675619912 ~2018
13929852761927859705523912 ~2018
13932071318327864142636712 ~2018
13932086377127864172754312 ~2018
13933624349927867248699912 ~2018
13933667744327867335488712 ~2018
1393433565073149...57058314 2024
13936274521127872549042312 ~2018
13938548555927877097111912 ~2018
13939066729127878133458312 ~2018
13940181721127880363442312 ~2018
13940263763927880527527912 ~2018
Home
4.724.182 digits
e-mail
25-04-13