Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5579935742311159871484712 ~2015
5580266183911160532367912 ~2015
5580444803911160889607912 ~2015
5581195601911162391203912 ~2015
5581504367944652034943312 ~2016
5582114309911164228619912 ~2015
5582364314311164728628712 ~2015
5582538512311165077024712 ~2015
5582971583911165943167912 ~2015
5583340351111166680702312 ~2015
5583347635778166866899912 ~2017
5583589700944668717607312 ~2016
5583592183111167184366312 ~2015
5583676327111167352654312 ~2015
5583716730755837167307112 ~2017
5584040813911168081627912 ~2015
5584497611911168995223912 ~2015
5584612987333507677923912 ~2016
5585008451911170016903912 ~2015
5585432876311170865752712 ~2015
5585603093944684824751312 ~2016
5585686871333514121227912 ~2016
5586319133911172638267912 ~2015
5586777547111173555094312 ~2015
5586990251944695922015312 ~2016
Exponent Prime Factor Dig. Year
5588384951911176769903912 ~2015
5588431229911176862459912 ~2015
5589065252311178130504712 ~2015
5589139283911178278567912 ~2015
5589449498311178898996712 ~2015
5589556663111179113326312 ~2015
5589584713111179169426312 ~2015
5589632662744717061301712 ~2016
5589699308311179398616712 ~2015
5589865298311179730596712 ~2015
5589999761911179999523912 ~2015
5590079897911180159795912 ~2015
5590119053911180238107912 ~2015
5590229447944721835583312 ~2016
5590655887111181311774312 ~2015
5590761013111181522026312 ~2015
5591427068311182854136712 ~2015
5591554364311183108728712 ~2015
5591691859333550151155912 ~2016
5592497660311184995320712 ~2015
559264343573624...46333714 2024
5593194986311186389972712 ~2015
5593678300355936783003112 ~2017
5594138600311188277200712 ~2015
5594162467111188324934312 ~2015
Exponent Prime Factor Dig. Year
5594236183111188472366312 ~2015
5594582215111189164430312 ~2015
5595105790133570634740712 ~2016
5595296933911190593867912 ~2015
5595705977333574235863912 ~2016
5596028336311192056672712 ~2015
5596038145744768305165712 ~2016
5596106662144768853296912 ~2016
5596141328311192282656712 ~2015
5596177464133577064784712 ~2016
5596372027744770976221712 ~2016
5596748443111193496886312 ~2015
5596791871111193583742312 ~2015
5596821581911193643163912 ~2015
5596828159111193656318312 ~2015
5597021264311194042528712 ~2015
5597152634311194305268712 ~2015
5597177008133583062048712 ~2016
5597304323911194608647912 ~2015
5597859751111195719502312 ~2015
5597958113911195916227912 ~2015
559804907291473...59872915 2025
5598091958311196183916712 ~2015
5598112237111196224474312 ~2015
5598195956311196391912712 ~2015
Exponent Prime Factor Dig. Year
5598706340311197412680712 ~2015
5598740496133592442976712 ~2016
5599240157911198480315912 ~2015
5599346821111198693642312 ~2015
5599385323111198770646312 ~2015
5599478593733596871562312 ~2016
5599852840744798822725712 ~2016
5599916827111199833654312 ~2015
5600075951911200151903912 ~2015
5600083232311200166464712 ~2015
5600084155111200168310312 ~2015
5600685623911201371247912 ~2015
5600735597911201471195912 ~2015
5600875721911201751443912 ~2015
5600893537333605361223912 ~2016
5600964590311201929180712 ~2015
5601059611111202119222312 ~2015
5601273013111202546026312 ~2015
5601386368133608318208712 ~2016
5601430327333608581963912 ~2016
5601492914311202985828712 ~2015
5601651131911203302263912 ~2015
5602268022133613608132712 ~2016
5602728865111205457730312 ~2015
5602848789733617092738312 ~2016
Home
4.933.056 digits
e-mail
25-07-20