Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8493273150150959638900712 ~2018
8493432059916986864119912 ~2016
8493551984316987103968712 ~2016
8493586718967948693751312 ~2018
8493592771767948742173712 ~2018
8493792517350962755103912 ~2018
8494399243116988798486312 ~2016
8494790051916989580103912 ~2016
8494851371916989702743912 ~2016
849567012793211...08346314 2023
8496045209916992090419912 ~2016
8497814006316995628012712 ~2016
8498047649916996095299912 ~2016
8499293629750995761778312 ~2018
8499717763350998306579912 ~2018
8500901573917001803147912 ~2016
850094807095100...42540114 2023
8501023889917002047779912 ~2016
8501439998968011519991312 ~2018
8501543606317003087212712 ~2016
8501645561917003291123912 ~2016
8501824126768014593013712 ~2018
8501844203917003688407912 ~2016
8502794318317005588636712 ~2016
8503139948317006279896712 ~2016
Exponent Prime Factor Dig. Year
8503484785117006969570312 ~2016
8503976777351023860663912 ~2018
8504055388768032443109712 ~2018
8504059613917008119227912 ~2016
8504116145917008232291912 ~2016
8504385619351026313715912 ~2018
8504766209917009532419912 ~2016
8505442166317010884332712 ~2016
8505623839117011247678312 ~2016
8505632426317011264852712 ~2016
8505820460317011640920712 ~2016
8506354009168050832072912 ~2018
8507815898317015631796712 ~2016
8509644320317019288640712 ~2016
8509768589917019537179912 ~2016
8509953115117019906230312 ~2016
8510316914317020633828712 ~2016
8510384215117020768430312 ~2016
8510558113117021116226312 ~2016
8510700631117021401262312 ~2016
8511393967117022787934312 ~2016
8513032316317026064632712 ~2016
8513377052317026754104712 ~2016
8513521430317027042860712 ~2016
8513913101917027826203912 ~2016
Exponent Prime Factor Dig. Year
8514006605917028013211912 ~2016
8515340743117030681486312 ~2016
8516918971351101513827912 ~2018
8517938521117035877042312 ~2016
8518359994768146879957712 ~2018
8518887569917037775139912 ~2016
8520022057117040044114312 ~2016
8520144269917040288539912 ~2016
8520859409917041718819912 ~2016
8521695530317043391060712 ~2016
8521759931917043519863912 ~2016
8521871555351131229331912 ~2018
8522586824317045173648712 ~2016
8522650609117045301218312 ~2016
8523109543117046219086312 ~2016
8523377606317046755212712 ~2016
8524383824317048767648712 ~2016
8525515310317051030620712 ~2016
8526144986317052289972712 ~2016
8527754759917055509519912 ~2016
8529976226317059952452712 ~2016
8530290097117060580194312 ~2016
8531029613917062059227912 ~2016
8533335623351200013739912 ~2018
8534658509917069317019912 ~2016
Exponent Prime Factor Dig. Year
8534855477917069710955912 ~2016
8535484394317070968788712 ~2016
8536004669917072009339912 ~2016
8536070426317072140852712 ~2016
8536312879768290503037712 ~2018
8536419835168291358680912 ~2018
8536602457117073204914312 ~2016
8537406331117074812662312 ~2016
8537438365117074876730312 ~2016
8537861342317075722684712 ~2016
8538687973117077375946312 ~2016
853933595592817...65447114 2023
8540574565351243447391912 ~2018
8541932234317083864468712 ~2016
8541942446317083884892712 ~2016
8542505369917085010739912 ~2016
8542513377751255080266312 ~2018
8542615580968340924647312 ~2018
8543091673768344733389712 ~2018
8543148289117086296578312 ~2016
8543198144317086396288712 ~2016
8543223551917086447103912 ~2016
8545069782151270418692712 ~2018
8545592320768364738565712 ~2018
8545924019917091848039912 ~2016
Home
4.828.532 digits
e-mail
25-06-01