Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12965185445925930370891912 ~2018
1296533396111226...27200715 2024
12965422698177792536188712 ~2019
12965558240325931116480712 ~2018
12966050305125932100610312 ~2018
12966885236325933770472712 ~2018
12967366075125934732150312 ~2018
12967742653125935485306312 ~2018
12968179136325936358272712 ~2018
12968501827125937003654312 ~2018
12968720575125937441150312 ~2018
12968864438325937728876712 ~2018
12969858560325939717120712 ~2018
12972062066325944124132712 ~2018
12973355029125946710058312 ~2018
1297336549432724...53803114 2024
12975287539125950575078312 ~2018
12975433084177852598504712 ~2019
12975724844325951449688712 ~2018
1297577101631453...53825714 2025
12976006536177856039216712 ~2019
12976272779925952545559912 ~2018
12977675730177866054380712 ~2019
12978180566325956361132712 ~2018
12978996509925957993019912 ~2018
Exponent Prime Factor Dig. Year
12979254878325958509756712 ~2018
12982220009925964440019912 ~2018
12983150503125966301006312 ~2018
12983643859125967287718312 ~2018
12983808596325967617192712 ~2018
12984908144325969816288712 ~2018
12986261065125972522130312 ~2018
1298635729394597...82040714 2023
12987783764325975567528712 ~2018
1298895900795673...46507315 2025
12989928647925979857295912 ~2018
12992736281925985472563912 ~2018
12993179411925986358823912 ~2018
12993880807125987761614312 ~2018
12993974089125987948178312 ~2018
12994882975777969297854312 ~2019
12996632021925993264043912 ~2018
12996731435925993462871912 ~2018
12998322998325996645996712 ~2018
12999138209925998276419912 ~2018
13000359818326000719636712 ~2018
13000797781126001595562312 ~2018
13001139133778006834802312 ~2019
13001301701926002603403912 ~2018
13001766782326003533564712 ~2018
Exponent Prime Factor Dig. Year
13002689993926005379987912 ~2018
13002982447126005964894312 ~2018
13003199351378019196107912 ~2019
13003519409926007038819912 ~2018
13005830147926011660295912 ~2018
13006446293926012892587912 ~2018
13006586400178039518400712 ~2019
13007487624178044925744712 ~2019
13008501247126017002494312 ~2018
13008510923926017021847912 ~2018
1300864953672731...02707114 2024
13009149013126018298026312 ~2018
13009821739378058930435912 ~2019
13009844177926019688355912 ~2018
13012062417778072374506312 ~2019
13012954697926025909395912 ~2018
13013086297126026172594312 ~2018
13013087672326026175344712 ~2018
13013105696326026211392712 ~2018
13013226173926026452347912 ~2018
13014574556326029149112712 ~2018
13015948415926031896831912 ~2018
13016376566326032753132712 ~2018
13017443630326034887260712 ~2018
13017917627378107505763912 ~2019
Exponent Prime Factor Dig. Year
13018902800326037805600712 ~2018
13019530543126039061086312 ~2018
13019904536326039809072712 ~2018
13019996039926039992079912 ~2018
13020405551926040811103912 ~2018
13020791240326041582480712 ~2018
13021084856326042169712712 ~2018
13021166941778127001650312 ~2019
13021260133126042520266312 ~2018
13021274725126042549450312 ~2018
13023412625926046825251912 ~2018
13026106193926052212387912 ~2018
13026810475126053620950312 ~2018
13026878987926053757975912 ~2018
13027411613926054823227912 ~2018
13027443013126054886026312 ~2018
13028160667126056321334312 ~2018
13028750516326057501032712 ~2018
13029256934326058513868712 ~2018
13029990227926059980455912 ~2018
13030201224178181207344712 ~2019
13030351991926060703983912 ~2018
13031312473126062624946312 ~2018
13031605021126063210042312 ~2018
13031967698326063935396712 ~2018
Home
4.724.182 digits
e-mail
25-04-13