Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8226321512316452643024712 ~2016
8226636554316453273108712 ~2016
8227177068149363062408712 ~2017
8228435652149370613912712 ~2017
8228647919916457295839912 ~2016
8228941831116457883662312 ~2016
8228954941116457909882312 ~2016
8229500173116459000346312 ~2016
8229736513116459473026312 ~2016
8229954884316459909768712 ~2016
8231586433349389518599912 ~2017
8231628119916463256239912 ~2016
8232085661916464171323912 ~2016
8232168293916464336587912 ~2016
8232220270165857762160912 ~2018
8232430466316464860932712 ~2016
8233218865116466437730312 ~2016
8233501139916467002279912 ~2016
8233678145916467356291912 ~2016
8234139677916468279355912 ~2016
8234983457349409900743912 ~2017
8235061733916470123467912 ~2016
8235655273116471310546312 ~2016
8235991841349415951047912 ~2017
8236031471349416188827912 ~2017
Exponent Prime Factor Dig. Year
8236210361916472420723912 ~2016
8236235450965889883607312 ~2018
8236968067116473936134312 ~2016
8237040895116474081790312 ~2016
8237137553916474275107912 ~2016
823719250432767...81444914 2024
8237221205349423327231912 ~2017
8237782357116475564714312 ~2016
8238210721116476421442312 ~2016
823823141692883...95915114 2024
8239721701116479443402312 ~2016
8240400376165923203008912 ~2018
824046341873032...38081714 2024
8241558386316483116772712 ~2016
8241682657116483365314312 ~2016
8241788113116483576226312 ~2016
8242039645116484079290312 ~2016
8242156651749452939910312 ~2017
8242232360316484464720712 ~2016
8242359806316484719612712 ~2016
8242426645116484853290312 ~2016
8242494944316484989888712 ~2016
8242632019165941056152912 ~2018
8242877581116485755162312 ~2016
8242962067116485924134312 ~2016
Exponent Prime Factor Dig. Year
8242992908965943943271312 ~2018
8243137631965945101055312 ~2018
8243158268316486316536712 ~2016
8243219132316486438264712 ~2016
8243897501349463385007912 ~2017
8244170311165953362488912 ~2018
8244359996316488719992712 ~2016
8244429883116488859766312 ~2016
8245030801349470184807912 ~2017
8246615011116493230022312 ~2016
8246665733349479994399912 ~2017
8246700512316493401024712 ~2016
8246785399116493570798312 ~2016
8246989814965975918519312 ~2018
8247317233749483903402312 ~2017
8247883111116495766222312 ~2016
8248765762165990126096912 ~2018
8249206135749495236814312 ~2017
8249415445165995323560912 ~2018
8250535727916501071455912 ~2016
8250652714149503916284712 ~2017
8250688465116501376930312 ~2016
8251064977349506389863912 ~2017
8251310600316502621200712 ~2016
8251730459916503460919912 ~2016
Exponent Prime Factor Dig. Year
8251787539749510725238312 ~2017
8252043229749512259378312 ~2017
8252766221916505532443912 ~2016
8252971495116505942990312 ~2016
825300112693499...77805714 2025
8253229850966025838807312 ~2018
8253270005916506540011912 ~2016
8253827681916507655363912 ~2016
8254749336149528496016712 ~2017
8255828558316511657116712 ~2016
8256473684316512947368712 ~2016
8256651293916513302587912 ~2016
8258226713916516453427912 ~2016
8258277662316516555324712 ~2016
8258343484766066747877712 ~2018
8258516662766068133301712 ~2018
825861629293070...77002315 2023
8259303445116518606890312 ~2016
8259964081116519928162312 ~2016
8260580893116521161786312 ~2016
8260761053916521522107912 ~2016
826081710971445...41975115 2025
8261114909966088919279312 ~2018
8261324329116522648658312 ~2016
8261434694316522869388712 ~2016
Home
4.828.532 digits
e-mail
25-06-01