Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5466264307110932528614312 ~2015
5466381094143731048752912 ~2016
5466451397910932902795912 ~2015
5466659110354666591103112 ~2017
5466882034132801292204712 ~2016
5467021969954670219699112 ~2017
5467062859110934125718312 ~2015
5467281992310934563984712 ~2015
5467303351110934606702312 ~2015
5467435324354674353243112 ~2017
5467572121110935144242312 ~2015
5468112845910936225691912 ~2015
5468124992310936249984712 ~2015
5468275031943746200255312 ~2016
5468353613910936707227912 ~2015
5468426234310936852468712 ~2015
5468802867732812817206312 ~2016
5468815376310937630752712 ~2015
5469395161954693951619112 ~2017
5469753521332818521127912 ~2016
5470176119332821056715912 ~2016
547041728213315...72952714 2023
5471111135910942222271912 ~2015
5471330938354713309383112 ~2017
5471536301910943072603912 ~2015
Exponent Prime Factor Dig. Year
5471549952132829299712712 ~2016
5471722475910943444951912 ~2015
5471878349910943756699912 ~2015
5471975720310943951440712 ~2015
5472379732743779037861712 ~2016
5472979247910945958495912 ~2015
5473257660132839545960712 ~2016
5473284649110946569298312 ~2015
5473388444976627438228712 ~2017
5473648729332841892375912 ~2016
5473766399910947532799912 ~2015
5473879229910947758459912 ~2015
5474115793110948231586312 ~2015
5474165669910948331339912 ~2015
5474173879110948347758312 ~2015
5474214325110948428650312 ~2015
5474316902310948633804712 ~2015
5474387003910948774007912 ~2015
5474412014310948824028712 ~2015
5474512664310949025328712 ~2015
5474667433110949334866312 ~2015
5474779724310949559448712 ~2015
5475147313110950294626312 ~2015
5475373745910950747491912 ~2015
5475413921332852483527912 ~2016
Exponent Prime Factor Dig. Year
5475439403910950878807912 ~2015
5476228799910952457599912 ~2015
5476527227910953054455912 ~2015
5476568198310953136396712 ~2015
5477262433110954524866312 ~2015
5477945290143823562320912 ~2016
5478111769110956223538312 ~2015
5478303181332869819087912 ~2016
5478636727732871820366312 ~2016
5478806260354788062603112 ~2017
5479178677110958357354312 ~2015
547937283971830...28459914 2024
5479606310310959212620712 ~2015
5479877600310959755200712 ~2015
5479954166310959908332712 ~2015
547997414333682...24297714 2023
5480131183732880787102312 ~2016
5480185225110960370450312 ~2015
5480307659910960615319912 ~2015
5480928703110961857406312 ~2015
5480957254143847658032912 ~2016
5480965847910961931695912 ~2015
5481028721910962057443912 ~2015
5481056735910962113471912 ~2015
5481180013743849440109712 ~2016
Exponent Prime Factor Dig. Year
5481491753910962983507912 ~2015
5481655118310963310236712 ~2015
5482123187910964246375912 ~2015
5482160804310964321608712 ~2015
5482316276310964632552712 ~2015
5482434559332894607355912 ~2016
5482655035110965310070312 ~2015
5482857082743862856661712 ~2016
5482911878310965823756712 ~2015
5483182027110966364054312 ~2015
5483301577332899809463912 ~2016
5483366450310966732900712 ~2015
5483469014310966938028712 ~2015
5483764883910967529767912 ~2015
5483819996310967639992712 ~2015
5483852647110967705294312 ~2015
5483861924310967723848712 ~2015
5483975195910967950391912 ~2015
5484324097110968648194312 ~2015
5484507155910969014311912 ~2015
5484510325110969020650312 ~2015
5484932993910969865987912 ~2015
5485100252310970200504712 ~2015
5485350523732912103142312 ~2016
5485578785910971157571912 ~2015
Home
4.933.056 digits
e-mail
25-07-20