Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5534320958311068641916712 ~2015
5534781559111069563118312 ~2015
5534894947111069789894312 ~2015
5535018419911070036839912 ~2015
5535075512311070151024712 ~2015
5535327175111070654350312 ~2015
5535886043911071772087912 ~2015
5536209505111072419010312 ~2015
5536306945111072613890312 ~2015
5536714241911073428483912 ~2015
5536973359111073946718312 ~2015
5537007855733222047134312 ~2016
553705708212613...42751314 2024
5537058038311074116076712 ~2015
5537146651111074293302312 ~2015
5537274737911074549475912 ~2015
5537337395911074674791912 ~2015
5537391241111074782482312 ~2015
5538214987111076429974312 ~2015
5538538445911077076891912 ~2015
5538859507144310876056912 ~2016
5539195574311078391148712 ~2015
5539310684311078621368712 ~2015
5539457101777552399423912 ~2017
5539610534311079221068712 ~2015
Exponent Prime Factor Dig. Year
5539817269111079634538312 ~2015
5539857242311079714484712 ~2015
5539947706133239686236712 ~2016
5540652119911081304239912 ~2015
5540897828311081795656712 ~2015
5541012479911082024959912 ~2015
5541157201111082314402312 ~2015
5541526579111083053158312 ~2015
5542025144311084050288712 ~2015
5542064653111084129306312 ~2015
5542264249111084528498312 ~2015
5542532749111085065498312 ~2015
5542681475911085362951912 ~2015
5542819541944342556335312 ~2016
5543368069111086736138312 ~2015
5543594684311087189368712 ~2015
5544172288744353378309712 ~2016
5545058173111090116346312 ~2015
5545196725111090393450312 ~2015
5545295024311090590048712 ~2015
5545410893911090821787912 ~2015
5546132491111092264982312 ~2015
5546470789111092941578312 ~2015
5547176300311094352600712 ~2015
5547278983144378231864912 ~2016
Exponent Prime Factor Dig. Year
5547279625111094559250312 ~2015
5547557238755475572387112 ~2017
5547575503111095151006312 ~2015
5547839465911095678931912 ~2015
5548279334311096558668712 ~2015
5548991875111097983750312 ~2015
5549355869333296135215912 ~2016
5549368489111098736978312 ~2015
5549419469911098838939912 ~2015
5549503250311099006500712 ~2015
5549579537333297477223912 ~2016
5549878976311099757952712 ~2015
5550256697911100513395912 ~2015
5550446905777706256679912 ~2017
5550647840311101295680712 ~2015
5550725465377710156514312 ~2017
5550863653111101727306312 ~2015
5551008919111102017838312 ~2015
5551043163733306258982312 ~2016
5551293091111102586182312 ~2015
5551331276311102662552712 ~2015
5551430666311102861332712 ~2015
5551484152355514841523112 ~2017
5551931465911103862931912 ~2015
5552390333911104780667912 ~2015
Exponent Prime Factor Dig. Year
5552542479733315254878312 ~2016
5552562835111105125670312 ~2015
5552662451911105324903912 ~2015
5552753180311105506360712 ~2015
5553319901911106639803912 ~2015
5553512227111107024454312 ~2015
5553629465911107258931912 ~2015
5554479469111108958938312 ~2015
5554721006311109442012712 ~2015
5554851494311109702988712 ~2015
5555221621111110443242312 ~2015
5555222381911110444763912 ~2015
5555344612744442756901712 ~2016
5555391953911110783907912 ~2015
5555492646133332955876712 ~2016
5555663564311111327128712 ~2015
5556463115911112926231912 ~2015
5556836179144454689432912 ~2016
5556970961911113941923912 ~2015
5557158860311114317720712 ~2015
5557504001911115008003912 ~2015
5557721051911115442103912 ~2015
5558165327911116330655912 ~2015
5558349499733350096998312 ~2016
5558362687744466901501712 ~2016
Home
4.933.056 digits
e-mail
25-07-20