Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
14052415013928104830027912 ~2018
14053230475128106460950312 ~2018
14053404061128106808122312 ~2018
14054321255928108642511912 ~2018
1405656925692586...43269714 2025
14057791879128115583758312 ~2018
14057922680328115845360712 ~2018
14058565037928117130075912 ~2018
14058710492328117420984712 ~2018
14059276964328118553928712 ~2018
14059746236328119492472712 ~2018
14060258648328120517296712 ~2018
14060648725128121297450312 ~2018
1406097517493149...39177714 2024
14061397741128122795482312 ~2018
14061765067128123530134312 ~2018
14062440715128124881430312 ~2018
14063290334328126580668712 ~2018
14063593379928127186759912 ~2018
14064584395128129168790312 ~2018
14064911240328129822480712 ~2018
14065359949128130719898312 ~2018
14070229316328140458632712 ~2018
14072126989128144253978312 ~2018
14073602621928147205243912 ~2018
Exponent Prime Factor Dig. Year
14074133831928148267663912 ~2018
1407475473774475...06588714 2024
1407567265273856...06839914 2024
14078904248328157808496712 ~2018
14078942039928157884079912 ~2018
14079062489928158124979912 ~2018
14079491341128158982682312 ~2018
1408024692592703...09772914 2024
14081300948328162601896712 ~2018
14082259922328164519844712 ~2018
14083972544328167945088712 ~2018
14085238679928170477359912 ~2018
14090169962328180339924712 ~2018
14090822873928181645747912 ~2018
14091152243928182304487912 ~2018
14092631767128185263534312 ~2018
14093687515128187375030312 ~2018
14095157173128190314346312 ~2018
14098767061128197534122312 ~2018
14099320831128198641662312 ~2018
14101728437928203456875912 ~2018
14101933973928203867947912 ~2018
14102230292328204460584712 ~2018
14102766073128205532146312 ~2018
14103913319928207826639912 ~2018
Exponent Prime Factor Dig. Year
14104753537128209507074312 ~2018
14105103836328210207672712 ~2018
14105132948328210265896712 ~2018
14106294302328212588604712 ~2018
14106451741128212903482312 ~2018
14107559411928215118823912 ~2018
14107713283128215426566312 ~2018
14108167219128216334438312 ~2018
14109566755128219133510312 ~2018
14109588272328219176544712 ~2018
14111468519928222937039912 ~2018
14111752727928223505455912 ~2018
14111811133128223622266312 ~2018
14112549437928225098875912 ~2018
14112672569928225345139912 ~2018
14113532351928227064703912 ~2018
14114026817928228053635912 ~2018
14114708813928229417627912 ~2018
14115316868328230633736712 ~2018
14117828863128235657726312 ~2018
14118455072328236910144712 ~2018
14118535139928237070279912 ~2018
14120330315928240660631912 ~2018
14120489569128240979138312 ~2018
14120505685128241011370312 ~2018
Exponent Prime Factor Dig. Year
14120913683928241827367912 ~2018
14122067981928244135963912 ~2018
14122237235928244474471912 ~2018
14122729841928245459683912 ~2018
14124847693128249695386312 ~2018
14124874327128249748654312 ~2018
14125544576328251089152712 ~2018
14125732345128251464690312 ~2018
14126049110328252098220712 ~2018
14126184533928252369067912 ~2018
14127167405928254334811912 ~2018
14127317975928254635951912 ~2018
14129061841128258123682312 ~2018
14130104900328260209800712 ~2018
14131583095128263166190312 ~2018
14132657651928265315303912 ~2018
14132889530328265779060712 ~2018
14134344133128268688266312 ~2018
14134486849128268973698312 ~2018
14134764301128269528602312 ~2018
14135065352328270130704712 ~2018
14135164069128270328138312 ~2018
14135562601128271125202312 ~2018
14136570827928273141655912 ~2018
14136795482328273590964712 ~2018
Home
4.724.182 digits
e-mail
25-04-13