Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8456136459750736818758312 ~2018
8456224553916912449107912 ~2016
8456252389116912504778312 ~2016
8456376121116912752242312 ~2016
8457444101916914888203912 ~2016
8457504223167660033784912 ~2018
8457517759116915035518312 ~2016
8457529255167660234040912 ~2018
8457597673116915195346312 ~2016
8457691232316915382464712 ~2016
8458985102316917970204712 ~2016
8459153899116918307798312 ~2016
8459422340967675378727312 ~2018
8459964336150759786016712 ~2018
8460007853967680062831312 ~2018
8460453961116920907922312 ~2016
8461383131967691065055312 ~2018
8461544681916923089363912 ~2016
8461728704316923457408712 ~2016
8461793122767694344981712 ~2018
8462431603750774589622312 ~2018
8462713001916925426003912 ~2016
8462794756150776768536712 ~2018
8463039103116926078206312 ~2016
8463066300150778397800712 ~2018
Exponent Prime Factor Dig. Year
8463198815916926397631912 ~2016
8463703087116927406174312 ~2016
8463726215916927452431912 ~2016
8464130423916928260847912 ~2016
8464198931916928397863912 ~2016
8464272083916928544167912 ~2016
8464354583916928709167912 ~2016
8465413259350792479555912 ~2018
8465845657750795073946312 ~2018
8467689553116935379106312 ~2016
8468056868316936113736712 ~2016
8468064293916936128587912 ~2016
8468247629916936495259912 ~2016
8468507113167748056904912 ~2018
8469092057916938184115912 ~2016
8469317389116938634778312 ~2016
8469614057916939228115912 ~2016
8470031149116940062298312 ~2016
8470681780150824090680712 ~2018
8471093881116942187762312 ~2016
8471145925116942291850312 ~2016
8471237198316942474396712 ~2016
847127328013642...10443114 2024
8471698999116943397998312 ~2016
8472225593916944451187912 ~2016
Exponent Prime Factor Dig. Year
8472228961116944457922312 ~2016
8472474809916944949619912 ~2016
8472657583116945315166312 ~2016
8472790436316945580872712 ~2016
847316601412762...20596714 2024
847320775971338...26032714 2024
8473404385167787235080912 ~2018
8474517593916949035187912 ~2016
8475049218150850295308712 ~2018
8475200382150851202292712 ~2018
8475380960316950761920712 ~2016
8475779936316951559872712 ~2016
8476723634316953447268712 ~2016
8477151800316954303600712 ~2016
8477387432316954774864712 ~2016
8477778893916955557787912 ~2016
8477816791750866900750312 ~2018
8478298868316956597736712 ~2016
8479060829916958121659912 ~2016
8479121137116958242274312 ~2016
8479531991916959063983912 ~2016
8479776205116959552410312 ~2016
8481056277750886337666312 ~2018
8481283256316962566512712 ~2016
8481560521116963121042312 ~2016
Exponent Prime Factor Dig. Year
848216540113749...07286314 2023
8482628777916965257555912 ~2016
8483476217916966952435912 ~2016
8483498393916966996787912 ~2016
8483939201916967878403912 ~2016
8485206164316970412328712 ~2016
8485489597116970979194312 ~2016
8485878412150915270472712 ~2018
8486659046316973318092712 ~2016
8487197772150923186632712 ~2018
8487260420316974520840712 ~2016
8487401813916974803627912 ~2016
8487402097116974804194312 ~2016
8487747649167901981192912 ~2018
8488738574316977477148712 ~2016
8488878655116977757310312 ~2016
8488994423916977988847912 ~2016
8489349874150936099244712 ~2018
8490227609916980455219912 ~2016
8490231059916980462119912 ~2016
8490249055750941494334312 ~2018
8490771210150944627260712 ~2018
8490878089767927024717712 ~2018
8491858009116983716018312 ~2016
8492378555916984757111912 ~2016
Home
4.828.532 digits
e-mail
25-06-01