Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
14407163911128814327822312 ~2018
14408563760328817127520712 ~2018
14409008525928818017051912 ~2018
14410308629928820617259912 ~2018
14411671550328823343100712 ~2018
14411706973128823413946312 ~2018
14412900593928825801187912 ~2018
14413205911128826411822312 ~2018
14414836490328829672980712 ~2018
14415300655128830601310312 ~2018
14415315005928830630011912 ~2018
14416421971128832843942312 ~2018
14416585505928833171011912 ~2018
14417140667928834281335912 ~2018
14417466680328834933360712 ~2018
1441791241633950...02066314 2024
14417988247128835976494312 ~2018
14418439211928836878423912 ~2018
14418859808328837719616712 ~2018
14419401997128838803994312 ~2018
14420125886328840251772712 ~2018
14423286488328846572976712 ~2018
14424450247128848900494312 ~2018
14425312514328850625028712 ~2018
14425633430328851266860712 ~2018
Exponent Prime Factor Dig. Year
14426112121128852224242312 ~2018
14430640973928861281947912 ~2018
14431248643128862497286312 ~2018
14432854555128865709110312 ~2018
14433758765928867517531912 ~2018
14434597166328869194332712 ~2018
14436795614328873591228712 ~2018
14437168610328874337220712 ~2018
14437915733928875831467912 ~2018
14439650387928879300775912 ~2018
14440009250328880018500712 ~2018
14440076341128880152682312 ~2018
14441232284328882464568712 ~2018
14441507876328883015752712 ~2018
14442755834328885511668712 ~2018
14443453357128886906714312 ~2018
14444031943128888063886312 ~2018
14445186422328890372844712 ~2018
14446211329128892422658312 ~2018
14447486347128894972694312 ~2018
14448125437128896250874312 ~2018
14448409897128896819794312 ~2018
14448422144328896844288712 ~2018
1444884203473120...79495314 2024
14449330703928898661407912 ~2018
Exponent Prime Factor Dig. Year
14451611965128903223930312 ~2018
1445461168314162...64732914 2024
14455419145128910838290312 ~2018
14455795865928911591731912 ~2018
1445685490332515...53174314 2024
14457643133928915286267912 ~2018
1445768052711763...24306314 2024
14458670261928917340523912 ~2018
14459543783928919087567912 ~2018
14461177513128922355026312 ~2018
14462319421128924638842312 ~2018
14462465162328924930324712 ~2018
14462829031128925658062312 ~2018
14466221321928932442643912 ~2018
14466977432328933954864712 ~2018
1446741622576597...98919314 2023
14469506837928939013675912 ~2018
14469572498328939144996712 ~2018
14469643550328939287100712 ~2018
14469773219928939546439912 ~2018
14471039726328942079452712 ~2018
14471754703128943509406312 ~2018
14471776061928943552123912 ~2018
14473551053928947102107912 ~2018
14473974871128947949742312 ~2018
Exponent Prime Factor Dig. Year
14475935534328951871068712 ~2018
14476517833128953035666312 ~2018
14478753482328957506964712 ~2018
14480168924328960337848712 ~2018
14480578637928961157275912 ~2018
14480773985928961547971912 ~2018
14480833622328961667244712 ~2018
14482082893128964165786312 ~2018
1448415640339038...95659314 2023
14484657557928969315115912 ~2018
14486062549128972125098312 ~2018
14486698303128973396606312 ~2018
14486799674328973599348712 ~2018
1448888823174259...40119914 2023
14489215736328978431472712 ~2018
14491450361928982900723912 ~2018
14492548939128985097878312 ~2018
14495690270328991380540712 ~2018
14495735462328991470924712 ~2018
14497280729928994561459912 ~2018
14498404897128996809794312 ~2018
14498683451928997366903912 ~2018
14499240332328998480664712 ~2018
14501671235929003342471912 ~2018
14502884725129005769450312 ~2018
Home
4.724.182 digits
e-mail
25-04-13