Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5709895398134259372388712 ~2016
5709957404311419914808712 ~2015
5710196696311420393392712 ~2015
5710201973911420403947912 ~2015
5710741471111421482942312 ~2015
5711724398311423448796712 ~2015
5711728012745693824101712 ~2017
5711899601911423799203912 ~2015
5711906425779966689959912 ~2017
5712040416757120404167112 ~2017
5712233629111424467258312 ~2015
5712555284311425110568712 ~2015
5712564860311425129720712 ~2015
5712740846311425481692712 ~2015
5712786101911425572203912 ~2015
5713414421911426828843912 ~2015
5713455691111426911382312 ~2015
5713465549111426931098312 ~2015
5713704065911427408131912 ~2015
5713895299111427790598312 ~2015
571437403433394...76374314 2024
5714701172311429402344712 ~2015
5714933153911429866307912 ~2015
5715297439145722379512912 ~2017
5715483957157154839571112 ~2017
Exponent Prime Factor Dig. Year
5715641480311431282960712 ~2015
5715678746311431357492712 ~2015
5715721285111431442570312 ~2015
5716120651334296723907912 ~2016
5716485019111432970038312 ~2015
5716893396134301360376712 ~2016
5716907009911433814019912 ~2015
5716925542134301553252712 ~2016
5716990220311433980440712 ~2015
5718001703334308010219912 ~2016
5718147104311436294208712 ~2015
571846043834346...33108114 2023
5718516673734311100042312 ~2016
5718672785911437345571912 ~2015
5718676673911437353347912 ~2015
5718864641911437729283912 ~2015
5719289132311438578264712 ~2015
5719462343334316774059912 ~2016
5719463881145755711048912 ~2017
5719546931911439093863912 ~2015
5719651388311439302776712 ~2015
5719757066311439514132712 ~2015
5719838095111439676190312 ~2015
5720072861911440145723912 ~2015
5720090510311440181020712 ~2015
Exponent Prime Factor Dig. Year
5720179928311440359856712 ~2015
5720427325111440854650312 ~2015
5720594503111441189006312 ~2015
5720646227911441292455912 ~2015
5720687737334324126423912 ~2016
5720832573157208325731112 ~2017
5720897179111441794358312 ~2015
5721008595734326051574312 ~2016
5721095503111442191006312 ~2015
5721225955734327355734312 ~2016
5722265239111444530478312 ~2015
5722625645911445251291912 ~2015
5722745024311445490048712 ~2015
5722817558311445635116712 ~2015
572292689511748...91425715 2025
5723135797111446271594312 ~2015
5723200853911446401707912 ~2015
5723239154311446478308712 ~2015
5723861546311447723092712 ~2015
5724746251111449492502312 ~2015
5725097021911450194043912 ~2015
5725296614311450593228712 ~2015
5725304143111450608286312 ~2015
5725513165111451026330312 ~2015
5725868047111451736094312 ~2015
Exponent Prime Factor Dig. Year
5725917169145807337352912 ~2017
5726048383111452096766312 ~2015
5726105093911452210187912 ~2015
5726188718311452377436712 ~2015
5726367816134358206896712 ~2016
5726784181111453568362312 ~2015
5726900605111453801210312 ~2015
5726997176311453994352712 ~2015
5727385235334364311411912 ~2016
5727676580311455353160712 ~2015
5727689795911455379591912 ~2015
5727931679911455863359912 ~2015
5727993041911455986083912 ~2015
5728377813157283778131112 ~2017
5728393675111456787350312 ~2015
5728461971945827695775312 ~2017
5728633420134371800520712 ~2016
5728713781111457427562312 ~2015
5728948021111457896042312 ~2015
5729275028311458550056712 ~2015
5729376871111458753742312 ~2015
5729977703334379866219912 ~2016
5730336050311460672100712 ~2015
5730339956311460679912712 ~2015
5730605287111461210574312 ~2015
Home
4.933.056 digits
e-mail
25-07-20