Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8753828868152522973208712 ~2018
8753906015917507812031912 ~2016
8754010111117508020222312 ~2016
8754228925117508457850312 ~2016
8755412863117510825726312 ~2016
8755531380152533188280712 ~2018
8755947241117511894482312 ~2016
8756241043117512482086312 ~2016
8756573722152539442332712 ~2018
8757034457917514068915912 ~2016
8757197978317514395956712 ~2016
8757661073917515322147912 ~2016
8757920767117515841534312 ~2016
8758170853117516341706312 ~2016
8758893368317517786736712 ~2016
875929906431541...35316914 2024
8759318174317518636348712 ~2016
8759684084317519368168712 ~2016
8760471308317520942616712 ~2016
8760658838317521317676712 ~2016
876105761872961...75120714 2023
8761295233352567771399912 ~2018
8761583912317523167824712 ~2016
8761664528317523329056712 ~2016
8762320442317524640884712 ~2016
Exponent Prime Factor Dig. Year
8762554596152575327576712 ~2018
8763110887117526221774312 ~2016
8763262117117526524234312 ~2016
8763353660317526707320712 ~2016
8763474208152580845248712 ~2018
8763822213752582933282312 ~2018
8763952931917527905863912 ~2016
8763955827752583734966312 ~2018
8764343389752586060338312 ~2018
8765465807352592794843912 ~2018
8765664433117531328866312 ~2016
8765822965117531645930312 ~2016
8766388301917532776603912 ~2016
8766802277917533604555912 ~2016
8767145075917534290151912 ~2016
8767408979917534817959912 ~2016
8767528289917535056579912 ~2016
8767707635917535415271912 ~2016
8768225747917536451495912 ~2016
8768256731917536513463912 ~2016
8768899717117537799434312 ~2016
8769586805917539173611912 ~2016
8770162925917540325851912 ~2016
8770803761917541607523912 ~2016
8771106171752626637030312 ~2018
Exponent Prime Factor Dig. Year
8771649145117543298290312 ~2016
8771668960152630013760712 ~2018
8771816935117543633870312 ~2016
8771856121117543712242312 ~2016
8772773312317545546624712 ~2016
8772876739117545753478312 ~2016
8772983606317545967212712 ~2016
8773164895117546329790312 ~2016
8773767169117547534338312 ~2016
8774295248317548590496712 ~2016
8774695625917549391251912 ~2016
8775528841752653173050312 ~2018
8776102016317552204032712 ~2016
8776848890317553697780712 ~2016
8777480809117554961618312 ~2016
8777805955752666835734312 ~2018
8777883497352667300983912 ~2018
877788931213563...60712714 2023
8778743618317557487236712 ~2016
8779160401117558320802312 ~2016
8779271616152675629696712 ~2018
8780423423917560846847912 ~2016
8780918411917561836823912 ~2016
8780978407117561956814312 ~2016
8781136199917562272399912 ~2016
Exponent Prime Factor Dig. Year
8782983061117565966122312 ~2016
8784185989170273487912912 ~2018
8784261841117568523682312 ~2016
8784335157752706010946312 ~2018
8784491605352706949631912 ~2018
8785610636317571221272712 ~2016
8787341294317574682588712 ~2016
8787525257917575050515912 ~2016
8788016534317576033068712 ~2016
8788343636317576687272712 ~2016
8788420651352730523907912 ~2018
8788648205917577296411912 ~2016
8789427493117578854986312 ~2016
8789761604317579523208712 ~2016
8790153889117580307778312 ~2016
8790505240152743031440712 ~2018
8790596174317581192348712 ~2016
8791132115917582264231912 ~2016
8791594633752749567802312 ~2018
8791671830317583343660712 ~2016
8792724398317585448796712 ~2016
8793540125917587080251912 ~2016
8794554007752767324046312 ~2018
8796135919770369087357712 ~2018
8796530585917593061171912 ~2016
Home
4.828.532 digits
e-mail
25-06-01